NU Water-Related Research in Cuming County

The list below shows water-related research being conducted within your district or that affects your district. They are sorted by water topic, then by primary contact's last name.

Displaying 9 records found for Cuming County


Topic Crop Water Use
Project's Primary Contact Information
Name Kranz, Bill
Unit Northeast Research and Extension Center
Email wkranz1@unl.edu
Phone 402-584-3857
Web Page http://bse.unl.edu/web/bse/wkranz1
Project Information
Title Developing Irrigation Management Module of the Hybrid-Maize Corn Growth Model
Other(s) Charles Shapiro, Northeast Research and Extension Center, cshapiro1@unl.edu; Suat Irmak, Biological Systems Engineering, sirmak2@unl.edu; Ken Cassman, Center for Energy Sciences and Research, kcassman1@unl.edu 
Description

A test site about 9 miles southwest of Ord and another site near West Point are being used to calibrate the Hybrid-Maize corn growth model for use in making recommendations for irrigation water applications when water supplies are insufficient to meet local crop water demands. At these locations center pivots are being managed to apply full crop needs on 1/4 and 75% of crop water use on another 1/4 of the system. Weather station data near Ord and soil water content from the field site are being used to help schedule the irrigation. Grain yield, soil water readings, and the producer's recordings of irrigation water applications are being used to document the model predictions. Researchers are collecting crop growth, dry matter production, and grain yield data.

Project Support Nebraska Natural Resources Conservation Service
Project Website
Report
Current Status Completed
Topic Drought
Project's Primary Contact Information
Name Hanson, Paul
Unit School of Natural Resources
Email phanson2@unl.edu
Phone 402-472-7762
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=758
Project Information
Title Pre-Historic Drought Records from the Eastern Platte River Valley
Other(s) R. Matt Joeckel, School of Natural Resources, rjoeckel3@unl.edu; Aaron Young, School of Natural Resources, ayoung3@unl.edu 
Description Recent studies have related large-scale dune activity in the Nebraska Sandhills and elsewhere on the western Great Plains to prehistoric megadroughts. At the eastern margin of the Great Plains, however, little or no effort has been expended toward identifying the impacts and severity of these climatic events. The eastern margin of the Great Plains should be of particular interest in paleclimate studies because it represents an important biogeographic boundary that may have shifted over time. In dunes around the present confluence of the Loup and Platte Rivers near Duncan, Nebraska, optical dating contrains, for the first time, the chronology of dune activity in the central-eastern margin of the Great Plains. A total of 17 optical age estimates taken from dune sediments clearly indicate two significant periods of dune activation at 5,100 to 3,500 years ago and 850-500 years ago. These reconstructed time intervals overlap both periods of large-scale dune activity in the Nebraska Sandhills and ancient droughts identified from other paleoclimate proxy records on the western Great Plains. The agreement between results from the eastern margin of the Great Plains and data from farther west indicate that megadroughts were truly regional in their effect. In order to further test a hypothesis of geographically-widespread megadrought effects, future work will date other dune deposits in eastern Nebraska from sites along the Loup and Elkhorn Rivers, as well as dunes in east-central Kansas and western Iowa.
Project Support United States Geological Survey Statemap Program
Project Website
Report Hanson Eastern Platte Valley.pdf
Current Status Published in Geomorphology 103 (2009) 555-561
Topic Hydrology
Project's Primary Contact Information
Name Chen, Xun-Hong
Unit School of Natural Resources
Email xchen2@unl.edu
Phone 402-472-0772
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=19
Project Information
Title Hydrologic Connections in the Elkhorn River Basin
Other(s) Sue Lackey, Conservation and Survey, slackey1@unl.edu 
Description This project involves investigating the hydrologic connections between streams and the adjacent aquifer systems in the Elkhorn River Basin. Researchers have used a Geoprobe direct-push technique, in-situ permeameter tests, and a thermal camera to collect data in this basin. Research has been conducted in Taylor Creek (west of the City of Madison), in Maple Creek, and two sites in the Elkhorn River near Norfolk and Meadow Grove. Ultimately this data will be used for integrated management of surface and groundwater resources.
Project Support Nebraska Department of Natural Resources, Upper Elkhorn Natural Resources District, Lower Elkhorn Natural Resources District
Project Website
Report
Current Status Continuous
Pic 1 Project Image
Pic Caption 1 This image shows our work in the Elkhorn River near Meadow Grove and in Taylor Creek. 
Pic 2 Project Image 2
Pic Caption 2 Direct-push techniques used by UNL researchers for study of stream-aquifer connections in Madison County, Nebraska. 
Topic Hydrology
Project's Primary Contact Information
Name Korus, Jesse
Unit Conservation and Survey Division
Email jkorus3@unl.edu
Phone 402-472-7561
Web Page http://snr.unl.edu/aboutus/who/people/staff-member.asp?pid=1010
Project Information
Title Eastern Nebraska Water Resources Assessment (ENWRA)
Other(s)

Paul Hanson, School of Natural Resources / Conservation and Survey Division, phanson2@unl.edu; Sue Lackey, School of Natural Resources / Conservation and Survey Divison, slackey1@unl.edu; Matt Marxsen, School of Natural Resources / Conservation and Survey Division, mmarxsen2@unl.edu

Dana Divine, ENWRA Project Coordinator, ddivine@lpsnrd.org

Visit the Nebraska Maps and More website (http://nebraskamaps.unl.edu/home.asp) to order an excellent publication that describes this project more in-depth, Bulletin 1: Eastern Nebraska Water Resources Assessment (ENWRA) Introduction to a Hydrogeological Study.

 
Description

Eastern Nebraska contains 70% of the state's population, but is most limited in terms of the state's groundwater supplies. The population in this region is expected to increase; thus the need for reliable water supplies is paramount. Natural resources districts (NRDs), charged with ground water management in Nebraska, seek to improve their management plans in response to growing populations, hydrologic drought, and new conjunctive management laws. Detailed mapping and characterization is necessary to delineate aquifers, assess their degree of hydrologic connection with streams and other aquifers, and better predict water quality and quantity.

In a collaborative effort between local, state, and federal agencies, the ENWRA project has been initiated to gain a clearer understanding of the region's groundwater and interconnected surface water resources. These resources can be difficult to characterize because of the complex geology created by past glaciations. Acquiring geologic and hydrologic data in the eastern, or glaciated, part of Nebraska requires the use of multiple, innovative techniques. Currently, little is known about which techniques are most effective and feasible. Once identified, the most effective and feasible tools will be used to provide data, interpretations, and models for improved water resources management.

The ENWRA group has established three pilot test sites for intensive study using a variety of investigative techniques. The goal of the initial work being done at the three pilot test sites is to determine the location, extent, and connectivity of aquifers with surface waters, with the hope of expanding these investigative techniques across other portions of eastern Nebraska. The pilot test sites are located near Oakland, Ashland, and Firth with each site exhibiting differing geologic conditions. The techniques that will be utilized in the study include: 1) helicopter electromagnetic (HEM) surveys; 2) ground-based geophysical surveys; 3) test hole drilling; and 4) geochemical analysis, just to name a few. So far HEM surveys were completed over approximately one township at each site. Other techniques were used to provide "ground truth" data to support the HEM interpretations.

The agencies involved in the ENWRA are:

  • Lower Platte South Natural Resources District
  • Lower Platte North Natural Resources District
  • Papio Missouri River Natural Resources District
  • Lower Elkhorn Natural Resources District
  • Lewis and Clark Natural Resources District
  • Nemaha Natural Resources District
  • United States Geological Survey
  • University of Nebraska Lincoln Conservation and Survey Division
  • Nebraska Department of Natural Resources
  • Nebraska Department of Environmental Quality
Project Support Nebraska Department of Natural Resources Interrelated Water Management Plan/Program
Project Website http://www.enwra.org/
Report
Current Status HEM surveys are complete and 3-D aquifer diagrams have been prepared. Report Status: Ashland area report has been prepared and is under review and the Firth area report is being written.
Pic 1 Project Image
Pic Caption 1 Eastern Nebraska Water Resources Assessment (ENWRA) Study Sites. 
Topic Hydrology
Project's Primary Contact Information
Name Lenters, John
Unit School of Natural Resources
Email jlenters2@unl.edu
Phone 402-472-9044
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=743
Project Information
Title On Basin Residence Time and Annual Hydrology: Development of Annual Hydrology Model of the Sandhills Rivers
Other(s) Erkan Istanbulluoglu, University of Washington, erkani@u.washington.edu; Durelle Scott, Virginia Tech, dscott@vt.edu; Tiejun Wang, University of Washington-Seattle, tjwang@u.washington.edu 
Description

Simple models of annual and mean annual basin runoff and evapotranspration, such as the one proposed by Budyko, are useful for investigating the relationship between river flow and climate, and planning water storage structures in basins where long term streamflow measurements are not available. Such models are often based on the assumption that annual precipitation is in balance with annual runoff and evapotranspiration, and change in water storage of the basin is negligible. In basins where groundwater is the dominant source of streamflow this assumption hardly holds.

In this study first we develop a technique to investigate groundwater residence time to identify time scales over which a simple model of mean annual runoff can be meaningfully used. The model is applied in the Niobrara and Loup Rivers. Second we develop an annual hydrology model by solving the rate of change in basin storage. The runoff component of the model is based on the well-known linear reservoir model and a parameterization to characterize runoff on saturated areas. River water storages and streamflow diverted for irrigation are included as inputs in the model. The model explained as high as 80% of the annual variability of runoff in the Niobrara River at the Sparks gage. The model underscores the importance of saturation overland flow in the basin. Finally we used the model to investigate climate change scenarios, including extreme dry and wet conditions, as well as scenarios for the Medieval Warm Period during which Sandhills were destabilized as suggested by geological evidence.

Project presentation at the 2008 Water Colloquium

Project Support National Science Foundation
Project Website
Report Lenters_Groundwater.pdf
Current Status Published "On the role of groundwater and soil texture in the regional water balance: An investigation of the Nebraska Sand Hills", USA, Water Resour. Res., 45, W10413, doi:10.1029/2009WR007733.
Topic Water Quality
Project's Primary Contact Information
Name Gitelson, Anatoly
Unit Center for Advanced Land Management Information Technologies
Email agitelson2@unl.edu
Phone 402-472-8386
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=39
Project Information
Title Using Remote Sensing to Detect the Threat of Blue-Green Algae
Description

Remote sensing is a useful tool for providing regulatory officials with the data necessary to make decisions regarding recreational waters. In 2005, CALMIT scientists undertook a collaborative effort with the Nebraska Department of Environmental Quality aimed at developing a tool to identify lakes where blue-green algae populations are present. The overall purpose was to incorporate those affected lakes into a toxic-algae alert procedure to provide early warnings to the public about the potential danger. This project also served to promote coordination and information sharing about toxic-algae issues among local units of government, lake associations, lake owners, and the public.

Both in-situ (close-range) and remote techniques were employed to detect and quantify in real-time the algal phytoplankton pigment concentration and composition (i.e., chlorophyll-a and phycocyanin in the water column). Two criteria were used to identify lakes and reservoirs with high probability of toxic algae: 1) chlorophyll concentration above 50 mg/m3; and 2) existence of blue green algae (the phycocyanin absorption feature has been used to indicate remotely the presence of blue-green algae). These criteria were tested by analytical assessment of toxic algae and the tests were positive: when the sensor systems indicated high probability of toxins, they were found in water samples.

Project Support Nebraska Department of Environmental Quality
Project Website http://www.calmit.unl.edu/research.php
Report
Current Status Completed
Topic Water Quality
Project's Primary Contact Information
Name Kolok, Alan
Unit Biology, UNO
Email akolok@mail.unomaha.edu
Phone 402-554-3545
Web Page http://www.unomaha.edu/envirotox/whoiam.php
Project Information
Title Occurrence and biological effect of exogenous steroids in the Elkhorn River, Nebraska
Other(s) Daniel D. Snow, School of Natural Resources, dsnow1@unl.edu; Satomi Kohno, Department of Zoology, University of Florida, kohno@ufl.edu; Marlo K. Sellin, Department of Biology, UNO, msellin@mail.unomaha.edu; Louis J. Guillette Jr., Department of Zoology, University of Florida, ljg@ufl.edu 
Description

Recent studies of surface waters in North America, Japan and Europe have reported the presence of steroidogenic agents as contaminants. This study had three objectives:

  1. to determine if steroidogenic compounds are present in the Elkhorn River,
  2. to determine if sediments collected from the Elkhorn River can act as a source of steroidogenic compounds to aquatic organisms, and
  3. to determine if site-specific biological effects are apparent in the hepatic gene expression of fathead minnows.

Evidence was obtained using three approaches:

  1. deployment of polar organic chemical integrative samplers (POCIS),
  2. deployment of caged fathead minnows, and
  3. a laboratory experiment in which POCIS and fish were exposed to sediments from the deployment sites.

Deployment sites included: the Elkhorn River immediately downstream from a Nebraska wastewater treatment plant, two waterways (Fisher Creek and Sand Creek) likely to be impacted by runoff from cattle feeding operations, and a reference site unlikely to be impacted by waste water inputs. The POCIS extracts were analyzed for a number of natural steroids and metabolites, as well as four different synthetic steroids: ethinylestradiol, zearalonol, 17-trenbolone and melengestrol acetate. Estrogenic and androgenic metabolites, as well as progesterone and trace levels of melengestrol acetate were detected in POCIS deployed at each site. POCIS deployed in tanks containing field sediments from the four sites did not accumulate the synthetic steroids except for ethinylestradiol, which was detected in the aquarium containing sediments collected near the wastewater treatment plant. Fish deployed in Sand Creek and at the wastewater treatment plant experienced significantly elevated levels of gene expression for two genes (StAR and P450scc) relative to those deployed in Fisher Creek. Fish exposed to the sediments collected from Sand Creek had significantly higher levels of hepatic StAR and P450scc gene expression than did fish exposed to sediments from the two other field sites, as well as the no-sediment control tank.

In conclusion:

  1. detectable levels of steroidogenic compounds were detected in passive samplers deployed in the Elkhorn River,
  2. sediments do not appear to be a significant source for steroidogenic compounds, and
  3. site-specific differences were found in mRNA expression among the different treatment groups of fish; however, a functional explanation for these differences is not readily forthcoming.
Project Support Nebraska Game and Parks Commission, U.S. Geological Survey's Section 104b Program as administered by the UNL Water Center, US Environmental Protection Agency Greater Opportunities Fellowship, Dr. Daniel Villeneuve, US Environmental Protection Agency
Project Website
Report Kolok_Elkhorn.pdf
Current Status Published in Science of the Total Environment 2007 388:104-115
Topic Water Quality
Project's Primary Contact Information
Name Kolok, Alan
Unit Biology, UNO
Email akolok@mail.unomaha.edu
Phone 402-554-3545
Web Page http://www.unomaha.edu/envirotox/whoiam.php
Project Information
Title The Watershed as A Conceptual Framework for the Study of Environmental and Human Health
Other(s) Cheryl L. Beseler, Department of Environmental, Agricultural and Occupational Health, UNMC, cbeseler@unmc.edu; Xun-Hong Chen, School of Natural Resources, xchen2@unl.edu; Patrick J. Shea, School of Natural Resources, pshea1@unl.edu 
Description

The watershed provides a physical basis for establishing linkages between aquatic contaminants, environmental health and human health. Current attempts to establish such linkages are limited by environmental and epidemiological constraints. Environmental limitations include difficulties in characterizing the temporal and spatial dynamics of agricultural runoff, in fully understanding the degradation and metabolism of these compounds in the environment, and in understanding complex mixtures. Epidemiological limitations include difficulties associated with the organization of risk factor data and uncertainty about which measurable endpoints are most appropriate for an agricultural setting. Nevertheless, the adoption of the watershed concept can alleviate some of these difficulties. From an environmental perspective, the watershed concept helps identify differences in land use and application of agrichemicals at a level of resolution relevant to human health outcomes. From an epidemiological perspective, the watershed concept places data into a construct with environmental relevance. This project uses the Elkhorn River watershed as a case study to show how the watershed can provide a conceptual framework for studies in environmental and human health.

Environmental sampling is necessary for evaluating exposure to hormone disrupting chemicals (HDCs); however, sampling is not systematic in time or space, nor does it represent the time frame necessary to adequately link it to human disease outcomes. Although data from municipal sources are available and reliable, countless private drinking water wells go untested and unmonitored. These wells may be in areas vulnerable to concentrated reservoirs of contaminants due to the soil type, infiltration rate, runoff potential, organic matter and erodibility coupled with land use in the region and the chemical properties of the contaminants introduced into the environment. The lack of a defined boundary and introduction of exposure heterogeneity is one of the primary reasons why associations to health outcomes cannot be shown in environmental epidemiological studies.

The use of the watershed provides a natural boundary and the potential within this boundary to obtain denominator data. Based on the characteristics of the watershed combined with sampling data, shared exposures can be identified and intermediate hypotheses tested using sentinel markers of exposure in fish and humans. Lastly, comparable groups identified in other watersheds with similar characteristics but different surrounding land uses can be used to replicate findings.

Project Support Department of Environmental, Agricultural and Occupational Health, University of Nebraska Medical Center
Project Website
Report Kolok_Watershed.pdf
Current Status Published in Environmental Health Insights 2009 3:1-10
Topic Water Quality
Project's Primary Contact Information
Name Thomas, Steve
Unit School of Natural Resources
Email sthomas5@unl.edu
Phone 402-472-4030
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=745
Project Information
Title Understanding Cyanobacteria Blooms in Willow Creek Reservoir
Other(s) Amy Burgin, School of Natural Resources, aburgin2@unl.edu 
Description

Cyanobacteria, also known as blue-green or toxic algae, pose a health threat to people and animals that come in contact with lake water suffering from an algal bloom and result in economic hardships to local communities that depend on recreational dollars spent at lakes experiencing blooms. Willow Creek Reservoir near Pierce, Nebraska is one such lake that has experienced several cyanobacterial blooms since its construction in 1984. When placed on alert status due to cyanobacteria levels, the estimated impact is an 80% drop in boaters and beach goers, a 33% drop in camper numbers, and a 50% drop in angler visitation. Local stakeholders such as the Lower Elkhorn Natural Resources District wish to reduce these blooms to the extent possible. However, in order to do so, a better understanding of the causes of those blooms needs to be established.

This project proposes to achieve that understanding by: (1) characterizing cyanobacteria levels in Willow Creek Reservoir; (2) characterizing potential causes of those cyanobacteria blooms; (3) identifying relations between cyanobacteria levels in Willow Creek Reservoir and potential causes; and (4) sharing those findings with the public and local stakeholders to provide guidance for managing cyanobacteria in Willow Creek Reservoir. These tasks will be accomplished over a 3-year period through a collaborative effort between six separate agencies and by leveraging funding from local, state, and federal sources in addition to those requested from the Nebraska Environmental Trust Fund.

Project Support Lower Elkhorn Natural Resources District
Project Website
Report
Current Status Underway