NU Water-Related Research in Greeley County

The list below shows water-related research being conducted within your district or that affects your district. They are sorted by water topic, then by primary contact's last name.

Displaying 9 records found for Greeley County


Topic Climate
Project's Primary Contact Information
Name Shulski, Martha
Unit High Plains Regional Climate Center
Email mshulski3@unl.edu
Phone 402-472-6711
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=474
Project Information
Title High Plains Regional Climate Center - Monitoring Stations
Description

As the demand for water grows, it is important to have reliable information for various assessments, such as drought, fire, and water development. In an effort to understand the surface hydrology and the water and energy interactions at the surface, scientists with the High Plains Regional Climate Center have installed a series of monitoring stations that collect temperature, humidity, solar radiation, windspeed and direction, soil temperature, precipitation and soil moisture data. These stations take hourly and daily data which can be used to calculate evapotranspiration and water balance terms. Monitoring equipment is located near Higgins Ranch, Sparks, Merritt, Ainsworth, New Port, Barta, Gudmundsens, Halsey, and Merna.

Volunteers supplement these stations by using rain gauges to monitor precipitation; volunteers enter their data online as part of the Nebraska Rainfall Assessment and Information Network (NeRAIN). In total volunteers from 40 states contribute precipitation data to the Community Collaborative Rain, Hail and Snow Network (CoCoRaHS). The CoCoRaHS network has been incorporated into the Applied Climate Information System (ACIS), which allows resource managers, researchers, and decision-makers to better access data.

Project Support National Climatic Data Center
Project Website http://hprcc.unl.edu
Report
Current Status Continuing
Topic Extension
Project's Primary Contact Information
Name Kranz, Bill
Unit Northeast Research and Extension Center
Email wkranz1@unl.edu
Phone 402-584-3857
Web Page http://bse.unl.edu/web/bse/wkranz1
Project Information
Title Demonstration Projects and Field Tours
Other(s) Charles Shapiro, Northeast Research and Extension Center, cshapiro1@unl.edu. 
Description

A project associated with using beef manure compost on sandy soils is being conducted near Pierce and Plainview as a means of improving soil quality, using a beef production by-product in crop production and reducing commercial fertilizer application. The data collected at these two sites has been presented by Charles Shapiro at several educational meetings across northeast Nebraska. The project shows a slight improvement is some parameters, but the cost of transportation reduces the quantity of compost that can be transported and so the effect on soil physical properties is minimal, although soil phosphorus levels are increasing.

Near Pierce a project funded by the Lower Elkhorn Natural Resources District aims to demonstrate the impact of reducing season long water application by 10% on corn yield. At this site the farmer uses a computer control panel to speed up or slow down his center pivot automatically to apply 10% less or 10% more than his normal application, respectively. Nitrogen is being applied at three different rates to demonstrate the adequacy of the UNL Calculation Procedure.

Near Brunswick a project funded by the Upper Elkhorn Natural Resources District aims to develop improved nitrogen credit following soybeans in a corn-soybean rotation. Six nitrogen treatments and 6 different cropping sequences have been imposed to determine the nitrogen credit from soybeans on sandy soils. This project will run through the 2008 growing season. To date data suggests lower nitrogen credits on the sands than the silt loam soils in eastern Nebraska.

Project Support Lower Elkhorn Natural Resources District, Upper Elkhorn Natural Resources District
Project Website
Report
Current Status Continuous
Topic Extension
Project's Primary Contact Information
Name Kranz, Bill
Unit Northeast Research and Extension Center
Email wkranz1@unl.edu
Phone 402-475-3857
Web Page
Project Information
Title Northeast Research and Extension Center - Haskell Agricultural Laboratory
Other(s) Charles Shapiro, Northeast Research and Extension Center, cshapiro1@unl.edu; Dave Shelton, Northeast Research and Extension Center, dshelton2@unl.edu; Sue Lackey, Conservation and Survey, slackey1@unl.edu; Terry Mader, Haskell Ag. Lab, tmader1@unl.edu 
Description

The role of the faculty and staff in this unit is to prevent or solve problems using research based information. Faculty and staff subscribe to the notion that their programs should be high quality, ecologically sound, economically viable, socially responsible and scientifically appropriate. Learning experiences can be customized to meet the needs of a wide range of business, commodity, or governmental organizations based upon the many subject matter disciplines represented. As part of the University of Nebraska, the Northeast Center faculty and staff consider themselves to be the front door to the University in northeast Nebraska. Through well targeted training backgrounds and continuous updating via the internet and other telecommunications technologies, faculty and staff have the most current information available to help their clientele.

The Haskell Ag. Lab is a University of Nebraska research farm located 1.5 miles east of the Dixon County Fairgrounds in Concord. This 320 acre farm was donated to the University of Nebraska by the C.D. Haskell family of Laurel in 1956. A number of demonstrations and projects are going on at the Haskell Ag. Lab, including a riparian buffer strip demonstration and a study to evaluate the effect of irrigation on soybean aphid population dynamics. Other studies focus on:

Subsurface Drip Irrigation: In the spring of 2007 a new subsurface drip irrigation system was installed on a 4 acre portion of the farm with sandy loam soils. The initial objective of the research is to collect field data to document crop water use rates for new corn varieties. Specifically, the work will concentrate on varieties that have different drought resistance ratings to improve the accuracy of the information provided to producers via the High Plains Regional Climate Center. In 2007, two varieties were planted and five irrigation treatments were imposed ranging from dryland to full irrigation. The data will also be used to develop improved local crop production functions for use in the Water Optimizer spreadsheet.

Hormones in Livestock Waste: This project will evaluate the fate of both naturally occurring and synthetic hormones that are associated with solid waste harvested from beef cattle feeding facilities. The research involves: 1) tracking the fate of hormonal compounds from the feedlot into surface run-off that would make its way into a liquid storage lagoon; 2) establishing stockpiled and composted sources of the solid manure removed from the feedlot; and 3) applying stockpiled and composted manure to cropland areas under different tillage systems and native grasses. Once the manure is applied the runoff potential will be evaluated using a rainfall simulator. Research will then focus on whether plants that could be a source of food for wildlife and/or domestic animals take up the hormones. (More information about this project is available; see projects listed under Dan Snow.)

Project Support Varies according to program and project - for more information see http://nerec.unl.edu/ Hormone Project funded by the U.S. Environmental Protection Agency
Project Website http://nerec.unl.edu/
Report
Current Status Continuous
Topic Hydrology
Project's Primary Contact Information
Name Lenters, John
Unit School of Natural Resources
Email jlenters2@unl.edu
Phone 402-472-9044
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=743
Project Information
Title On Basin Residence Time and Annual Hydrology: Development of Annual Hydrology Model of the Sandhills Rivers
Other(s) Erkan Istanbulluoglu, University of Washington, erkani@u.washington.edu; Durelle Scott, Virginia Tech, dscott@vt.edu; Tiejun Wang, University of Washington-Seattle, tjwang@u.washington.edu 
Description

Simple models of annual and mean annual basin runoff and evapotranspration, such as the one proposed by Budyko, are useful for investigating the relationship between river flow and climate, and planning water storage structures in basins where long term streamflow measurements are not available. Such models are often based on the assumption that annual precipitation is in balance with annual runoff and evapotranspiration, and change in water storage of the basin is negligible. In basins where groundwater is the dominant source of streamflow this assumption hardly holds.

In this study first we develop a technique to investigate groundwater residence time to identify time scales over which a simple model of mean annual runoff can be meaningfully used. The model is applied in the Niobrara and Loup Rivers. Second we develop an annual hydrology model by solving the rate of change in basin storage. The runoff component of the model is based on the well-known linear reservoir model and a parameterization to characterize runoff on saturated areas. River water storages and streamflow diverted for irrigation are included as inputs in the model. The model explained as high as 80% of the annual variability of runoff in the Niobrara River at the Sparks gage. The model underscores the importance of saturation overland flow in the basin. Finally we used the model to investigate climate change scenarios, including extreme dry and wet conditions, as well as scenarios for the Medieval Warm Period during which Sandhills were destabilized as suggested by geological evidence.

Project presentation at the 2008 Water Colloquium

Project Support National Science Foundation
Project Website
Report Lenters_Groundwater.pdf
Current Status Published "On the role of groundwater and soil texture in the regional water balance: An investigation of the Nebraska Sand Hills", USA, Water Resour. Res., 45, W10413, doi:10.1029/2009WR007733.
Topic Hydrology
Project's Primary Contact Information
Name Pederson, Darryll
Unit Earth and Atmospheric Sciences
Email dpederson2@unl.edu
Phone 402-472-7563
Web Page http://eas.unl.edu/people/faculty_page.php?lastname=Pederson&firstname=Darryll&type=REG
Project Information
Title Waterfalls on the Niobrara River's Spring-fed Tributaries
Description The waterfalls on the spring-fed tributaries of the Niobrara River downstream from Valentine, Nebraska are unique in that the waterfalls are convex downstream. Groundwater discharge on either side of the waterfalls has led to significant weathering because of freeze/thaw cycles in the winter and wet/dry cycles in the summer. The water falling over the face of the falls protects them from the two weathering processes. Because the weathering rates on either side are higher than the erosion rates from falling water, the face of the falls is convex downstream. Similar waterfall face morphology occurs on the Island of Kauai where the main weathering processes are driven by vegetation and the presence of water.
Project Support National Park Service through the Great Plains Cooperative Ecosystem Studies Unit
Project Website http://snr.unl.edu/gpcesu/Project_library.htm
Report Waterfalls_Abstract.pdf
Current Status Completed
Topic Hydrology
Project's Primary Contact Information
Name Wang, Tiejun
Unit School of Natural Resources
Email tiejunwang215@yahoo.com
Phone
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=945
Project Information
Title Niobrara River Flow Variability
Other(s) Erkan Istanbulluoglu, University of Washington, erkani@u.washington.edu 
Description This project develops a database for hydrological and climatological variables within the Niobrara River basin so that researchers may study flow variability in the Niobrara River and its historical changes. Analysis includes all existing and discontinued streamflow gages within the system. Surface water diversion data are also collected to relate to changes in the flow discharge. Annual water yield of the river is studied at Sparks and Verdel gages. A lumped annual water yield model is developed to identify the natural variables that control runoff. The model uses annual runoff as forcing variable, as well as water diversions as outflux from the system. The model is currently being extended to monthly time scales.
Project Support Nebraska Game and Parks Commission, National Park Service
Project Website
Report
Current Status Underway
Topic Sandhills Studies and Modeling
Project's Primary Contact Information
Name Efting, Aris
Unit School of Natural Resources
Email aefting@unl.edu
Phone 402-472-3471
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=226
Project Information
Title Determining Toxic Algal Bloom Frequency in Nebraska Lakes
Description Research has been conducted in the Sandhills to determine whether or not there has been an increase in toxic algal blooms. Four different lakes were cored to identify the lakes' history of toxic algal blooms and determine whether there is an increase in toxin concentrations post 1950.
Project Support Layman Fund
Project Website
Report
Current Status Underway
Topic Sandhills Studies and Modeling
Project's Primary Contact Information
Name Wedin, Dave
Unit School of Natural Resources
Email dwedin1@unl.edu
Phone 402-472-9608
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=128
Project Information
Title Sand Hills Biocomplexity Project
Other(s) Vitaly Zlotnik, Department of Geosciences, vzlotnik1@unl.edu. 
Description

The Sand Hills, the largest sand dune area in the Western Hemisphere, is now stabalized by native grasses. This was not always the case. The Sand Hills have mobilized several times over the last 10,550 years. Major droughts destabilized significant portions of the Sand Hills as recently as 1000 years ago. The stability of the Sand Hills affects not only hundreds of cattle ranches, but also the recharge of the High Plains Aquifer. Of the total groundwater stored in this vast aquifer, 65% occurs in Nebraska and over half of that lies under the Sand Hills. The groundwater connection is obvious throughout the region. Due to the high water table, interdunal valleys in portions of the Sand Hills contain extensive complexes of lakes, wetlands, and naturally sub-irrigated wet meadows, which together cover over 10% of the landscape.

The Sand Hills Biocomplexity Project is a major federal project led by Professor Wedin. The project is aimed at testing whether:

  1. Evapotranspiration (ET) from wet valleys buffers the impacts of short-term drought on upland grasslands through local climate feedbacks. (resistance stability)
  2. When wetlands go dry, the combined effect of lost upland grass cover and lost wetland ET creates a desertification feedback that amplifies drought impacts.
  3. Since subregions of the Sand Hills differ in their extent of interdunal wetlands, subregions respond differently to paleo and historic droughts, thus enabling landowners to prepare for future droughts.
  4. Increased groundwater recharge when dunes are bare hastens the rise of groundwater levels, which, together with the rapid recovery of warm season grasses, restabilizes the dunes. (resilience stability)

The project's Grassland Destabilization Experiment (GDEX) is studying what happens to a Sand Hills dune when the vegetation dies. Researchers have created 10 circular plots at the Barta Brothers Ranch, each 120 meters in diameter, and used herbicide to kill all the vegetation on several of them. The plots are kept clear of vegetation, so that information on vegetation coverage, root mass, soil organic matter, and sand movement may be monitored and recorded to determine the stability of the plots. Results indicate that the Sand Hills may be more stable than previously thought; that is, ersosion is just starting to occur were vegetation was killed two years ago. Additional studies are needed to determine what happens when sand dunes become mobile.

As a part of this project, Professor Vitaly Zlotnik carries out research on groundwater recharge, hydraulic properties of the dune cover, and the climate change effects on groundwater recharge.

Project Support National Science Foundation
Project Website http://sandhills-biocomplexity.unl.edu/
Report
Current Status n/a
Topic Wildlife
Project's Primary Contact Information
Name Pegg, Mark
Unit School of Natural Resources
Email mpegg2@unl.edu
Phone 402-472-6824
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=739
Project Information
Title Habitat Usage of Missouri River Paddlefish Project
Description Sediment from the Niobrara River has created a delta area near the headwaters of Lewis and Clark Lake, the reservoir formed by Gavins Point Dam on the Missouri River. This sediment aggregation has reduced reservoir volume and threatens to fill the reservoir; therefore, restoration of reservoir capacity has been proposed by means of high-velocity water releases from upstream mainstem dams. Biologists, however, have reported that this delta area may serve as spawning grounds for native fishes like paddlefish, and may provide suitable spawning habitat for federally endangered pallid sturgeon. This situation has created a unique paradox where information is needed to provide insight into fulfilling both the river management needs and biological needs in the Missouri River. This project will use paddlefish telemetry to study spawning success.

Click here to read Brenda Pracheil's dissertation on Paddlefish populations

Project Support Nebraska Environmental Trust
Project Website
Report Pracheil et al_Fisheries_2012.pdf
Current Status Completed