NU Water-Related Research in Platte County

The list below shows water-related research being conducted within your district or that affects your district. They are sorted by water topic, then by primary contact's last name.

Displaying 17 records found for Platte County


Topic Climate
Project's Primary Contact Information
Name Irmak, Suat
Unit Biological Systems Engineering
Email sirmak2@unl.edu
Phone 402-472-4865
Web Page http://bse.unl.edu/sirmak2
Project Information
Title Dynamics of Climate Change in Central Platte Valley, Nebraska, as Indicated by Agro-meteorological Indices over 116 years (1893-2008): Preliminary Analyses
Other(s) Kabenge, Isa Mutiibwa, Denis 
Description

It has been established with a degree of confidence that the temperature of the earth’s atmosphere has increased by about 0.3 to 0.6 degrees C in the late 19th century (IPCC, 1997). Global warming can have substantial impact on agricultural production, water resources, and their interactions, by influencing microclimatic variables that drive plant physiological functions, such as surface air temperature, solar radiation, humidity, wind speed, rainfall frequency and amount, as well as hydrological balances, including evapotranspiration. Knowledge and analyses of long-term historical trends in agro-meteorological and hydrological parameters can aid in water resources design, planning, and man-agement. Historical trends in these variables can also help to relate agro-ecosystem production to climate change. We assessed the long-term trends in climatic variables. We quantified reference evapo-transpiration from solar and net radiation, vapor pressure deficit, wind speed, relative humidity, and air temperature from 1893 to 2008 using measured and estimated climatic data. Both alfalfa-reference and grass-reference evapotranspiration values were computed on a daily time step. We present historical trends in air temperature, relative humidity, preci-pitation, solar radiation, and evapotranspiration from 116 years of climatic observations and modeling results in the Central Platte Valley, Nebraska.

Conclusions from this project are:

  • Missing long-term climatic variables from 1893 to 1986 were reliably estimated for reference ET calculations.
  • Annual total rainfall amount showed an increasing trend over 116 years.
  • Both grass and alfalfa-reference ET fluctuated from year to year, but slightly decreased over the years.
  • Solar radiation slightly decreased due to increased rainfall/cloud cover.
  • Average vapour pressure deficit (VPD) did not change considerably.
  • Aridity index trend indicates a general tendency for Central City, NE area to shift toward more humid conditions, more so in the last 10 years.
Project Support
Project Website
Report
Current Status Completed
Topic Drought
Project's Primary Contact Information
Name Hanson, Paul
Unit School of Natural Resources
Email phanson2@unl.edu
Phone 402-472-7762
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=758
Project Information
Title Pre-Historic Drought Records from the Eastern Platte River Valley
Other(s) R. Matt Joeckel, School of Natural Resources, rjoeckel3@unl.edu; Aaron Young, School of Natural Resources, ayoung3@unl.edu 
Description Recent studies have related large-scale dune activity in the Nebraska Sandhills and elsewhere on the western Great Plains to prehistoric megadroughts. At the eastern margin of the Great Plains, however, little or no effort has been expended toward identifying the impacts and severity of these climatic events. The eastern margin of the Great Plains should be of particular interest in paleclimate studies because it represents an important biogeographic boundary that may have shifted over time. In dunes around the present confluence of the Loup and Platte Rivers near Duncan, Nebraska, optical dating contrains, for the first time, the chronology of dune activity in the central-eastern margin of the Great Plains. A total of 17 optical age estimates taken from dune sediments clearly indicate two significant periods of dune activation at 5,100 to 3,500 years ago and 850-500 years ago. These reconstructed time intervals overlap both periods of large-scale dune activity in the Nebraska Sandhills and ancient droughts identified from other paleoclimate proxy records on the western Great Plains. The agreement between results from the eastern margin of the Great Plains and data from farther west indicate that megadroughts were truly regional in their effect. In order to further test a hypothesis of geographically-widespread megadrought effects, future work will date other dune deposits in eastern Nebraska from sites along the Loup and Elkhorn Rivers, as well as dunes in east-central Kansas and western Iowa.
Project Support United States Geological Survey Statemap Program
Project Website
Report Hanson Eastern Platte Valley.pdf
Current Status Published in Geomorphology 103 (2009) 555-561
Topic Extension
Project's Primary Contact Information
Name Kranz, Bill
Unit Northeast Research and Extension Center
Email wkranz1@unl.edu
Phone 402-475-3857
Web Page
Project Information
Title Northeast Research and Extension Center - Haskell Agricultural Laboratory
Other(s) Charles Shapiro, Northeast Research and Extension Center, cshapiro1@unl.edu; Dave Shelton, Northeast Research and Extension Center, dshelton2@unl.edu; Sue Lackey, Conservation and Survey, slackey1@unl.edu; Terry Mader, Haskell Ag. Lab, tmader1@unl.edu 
Description

The role of the faculty and staff in this unit is to prevent or solve problems using research based information. Faculty and staff subscribe to the notion that their programs should be high quality, ecologically sound, economically viable, socially responsible and scientifically appropriate. Learning experiences can be customized to meet the needs of a wide range of business, commodity, or governmental organizations based upon the many subject matter disciplines represented. As part of the University of Nebraska, the Northeast Center faculty and staff consider themselves to be the front door to the University in northeast Nebraska. Through well targeted training backgrounds and continuous updating via the internet and other telecommunications technologies, faculty and staff have the most current information available to help their clientele.

The Haskell Ag. Lab is a University of Nebraska research farm located 1.5 miles east of the Dixon County Fairgrounds in Concord. This 320 acre farm was donated to the University of Nebraska by the C.D. Haskell family of Laurel in 1956. A number of demonstrations and projects are going on at the Haskell Ag. Lab, including a riparian buffer strip demonstration and a study to evaluate the effect of irrigation on soybean aphid population dynamics. Other studies focus on:

Subsurface Drip Irrigation: In the spring of 2007 a new subsurface drip irrigation system was installed on a 4 acre portion of the farm with sandy loam soils. The initial objective of the research is to collect field data to document crop water use rates for new corn varieties. Specifically, the work will concentrate on varieties that have different drought resistance ratings to improve the accuracy of the information provided to producers via the High Plains Regional Climate Center. In 2007, two varieties were planted and five irrigation treatments were imposed ranging from dryland to full irrigation. The data will also be used to develop improved local crop production functions for use in the Water Optimizer spreadsheet.

Hormones in Livestock Waste: This project will evaluate the fate of both naturally occurring and synthetic hormones that are associated with solid waste harvested from beef cattle feeding facilities. The research involves: 1) tracking the fate of hormonal compounds from the feedlot into surface run-off that would make its way into a liquid storage lagoon; 2) establishing stockpiled and composted sources of the solid manure removed from the feedlot; and 3) applying stockpiled and composted manure to cropland areas under different tillage systems and native grasses. Once the manure is applied the runoff potential will be evaluated using a rainfall simulator. Research will then focus on whether plants that could be a source of food for wildlife and/or domestic animals take up the hormones. (More information about this project is available; see projects listed under Dan Snow.)

Project Support Varies according to program and project - for more information see http://nerec.unl.edu/ Hormone Project funded by the U.S. Environmental Protection Agency
Project Website http://nerec.unl.edu/
Report
Current Status Continuous
Topic Hydrology
Project's Primary Contact Information
Name Chen, Xun-Hong
Unit School of Natural Resources
Email xchen2@unl.edu
Phone 402-472-0772
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=19
Project Information
Title Hydrologic Connections in the Elkhorn River Basin
Other(s) Sue Lackey, Conservation and Survey, slackey1@unl.edu 
Description This project involves investigating the hydrologic connections between streams and the adjacent aquifer systems in the Elkhorn River Basin. Researchers have used a Geoprobe direct-push technique, in-situ permeameter tests, and a thermal camera to collect data in this basin. Research has been conducted in Taylor Creek (west of the City of Madison), in Maple Creek, and two sites in the Elkhorn River near Norfolk and Meadow Grove. Ultimately this data will be used for integrated management of surface and groundwater resources.
Project Support Nebraska Department of Natural Resources, Upper Elkhorn Natural Resources District, Lower Elkhorn Natural Resources District
Project Website
Report
Current Status Continuous
Pic 1 Project Image
Pic Caption 1 This image shows our work in the Elkhorn River near Meadow Grove and in Taylor Creek. 
Pic 2 Project Image 2
Pic Caption 2 Direct-push techniques used by UNL researchers for study of stream-aquifer connections in Madison County, Nebraska. 
Topic Hydrology
Project's Primary Contact Information
Name Chen, Xun-Hong
Unit School of Natural Resources
Email xchen2@unl.edu
Phone 402-472-0772
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=19
Project Information
Title Groundwater Flow Model for the Lower Platte North Natural Resources District
Other(s) Cheng Cheng, School of Natural Resources 
Description Compared to other parts of Nebraska, the Platte River is wide and thus it is more challenging to characterize its hydrologic connections with the surrounding aquifers. The shallow aquifer consists of the alluvial and glacial deposits and displays strong heterogeneity. A three-dimensional groundwater flow model is developed using Visual MODFLOW to evaluate the impacts of groundwater withdrawals on the stream-aquifer system in the Lower Platte River Basin. The study area is about 65 miles by 50 miles and is located in eastern Nebraska. Two pumping tests were conducted to determine the hydraulic properties of the aquifers and aquitards, which are beneficial for model calibration. In-situ and laboratory permeameter tests of streambed sediments in the Platte River were per-formed to determine the streambed vertical hydraulic conductivity (Kv) values, which play an important role in controlling stream-aquifer interactions. The ground-water flow model integrates the geological, hydrological, precipitation, and soil information. The test-hole logs combining with the irrigation well logs were used to define the hydrostratigraphic units. The model is divided into 5 layers with 201 columns and 195 rows in each layer. The Platte River is simulated by the constant-head boundary package in MODFLOW. The model is calibrated using the groundwater level measurements of the USGS and local Natural Resources District observation wells from January 1950 to December 2004. The time interval of the calibration is divided into 660 stress periods, and each stress period consists of 10 time steps. Trial-and-error calibration is used to determine the hydraulic conductivity, specific yield, and specific storage of the aquifers and aquitards. Furthermore, the values of groundwater recharge and evapotranspiration are estimated by model calibration. After the model is well calibrated, it is used to determine the impacts of groundwater pumping over the 55 year periods on the streamflow in the Platte River.
Project Support Lower Platte North Natural Resources District
Project Website
Report
Current Status Underway
Topic Hydrology
Project's Primary Contact Information
Name Korus, Jesse
Unit Conservation and Survey Division
Email jkorus3@unl.edu
Phone 402-472-7561
Web Page http://snr.unl.edu/aboutus/who/people/staff-member.asp?pid=1010
Project Information
Title Eastern Nebraska Water Resources Assessment (ENWRA)
Other(s)

Paul Hanson, School of Natural Resources / Conservation and Survey Division, phanson2@unl.edu; Sue Lackey, School of Natural Resources / Conservation and Survey Divison, slackey1@unl.edu; Matt Marxsen, School of Natural Resources / Conservation and Survey Division, mmarxsen2@unl.edu

Dana Divine, ENWRA Project Coordinator, ddivine@lpsnrd.org

Visit the Nebraska Maps and More website (http://nebraskamaps.unl.edu/home.asp) to order an excellent publication that describes this project more in-depth, Bulletin 1: Eastern Nebraska Water Resources Assessment (ENWRA) Introduction to a Hydrogeological Study.

 
Description

Eastern Nebraska contains 70% of the state's population, but is most limited in terms of the state's groundwater supplies. The population in this region is expected to increase; thus the need for reliable water supplies is paramount. Natural resources districts (NRDs), charged with ground water management in Nebraska, seek to improve their management plans in response to growing populations, hydrologic drought, and new conjunctive management laws. Detailed mapping and characterization is necessary to delineate aquifers, assess their degree of hydrologic connection with streams and other aquifers, and better predict water quality and quantity.

In a collaborative effort between local, state, and federal agencies, the ENWRA project has been initiated to gain a clearer understanding of the region's groundwater and interconnected surface water resources. These resources can be difficult to characterize because of the complex geology created by past glaciations. Acquiring geologic and hydrologic data in the eastern, or glaciated, part of Nebraska requires the use of multiple, innovative techniques. Currently, little is known about which techniques are most effective and feasible. Once identified, the most effective and feasible tools will be used to provide data, interpretations, and models for improved water resources management.

The ENWRA group has established three pilot test sites for intensive study using a variety of investigative techniques. The goal of the initial work being done at the three pilot test sites is to determine the location, extent, and connectivity of aquifers with surface waters, with the hope of expanding these investigative techniques across other portions of eastern Nebraska. The pilot test sites are located near Oakland, Ashland, and Firth with each site exhibiting differing geologic conditions. The techniques that will be utilized in the study include: 1) helicopter electromagnetic (HEM) surveys; 2) ground-based geophysical surveys; 3) test hole drilling; and 4) geochemical analysis, just to name a few. So far HEM surveys were completed over approximately one township at each site. Other techniques were used to provide "ground truth" data to support the HEM interpretations.

The agencies involved in the ENWRA are:

  • Lower Platte South Natural Resources District
  • Lower Platte North Natural Resources District
  • Papio Missouri River Natural Resources District
  • Lower Elkhorn Natural Resources District
  • Lewis and Clark Natural Resources District
  • Nemaha Natural Resources District
  • United States Geological Survey
  • University of Nebraska Lincoln Conservation and Survey Division
  • Nebraska Department of Natural Resources
  • Nebraska Department of Environmental Quality
Project Support Nebraska Department of Natural Resources Interrelated Water Management Plan/Program
Project Website http://www.enwra.org/
Report
Current Status HEM surveys are complete and 3-D aquifer diagrams have been prepared. Report Status: Ashland area report has been prepared and is under review and the Firth area report is being written.
Pic 1 Project Image
Pic Caption 1 Eastern Nebraska Water Resources Assessment (ENWRA) Study Sites. 
Topic Riparian Vegetation Water Use
Project's Primary Contact Information
Name Kilic, Ayse
Unit Center for Advanced Land Management Information Technologies
Email akilic@unl.edu
Phone 402-472-5351
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=860
Project Information
Title Estimating Riparian Water Use: An Application of Remote Sensing
Description The goal of this project is to quantify riparian evapotranspiration (ET) by utilzing satellite and air-borne remote sensing data on selected watersheds in the North Platte River. The results will be used to develop guidelines on riparian water use.
Project Support UNL Office of Research Layman Award
Project Website
Report
Current Status Completed
Topic Survey
Project's Primary Contact Information
Name Joseph Hamm
Unit jhamm2@nebraska.edu
Phone 402-472-5678
Web Page http://ppc.unl.edu/
Project Information
Title Platte River Habitat Partnership Survey
Other(s) Lisa Pytlik Zillig, Public Policy Center, lpytlikz@nebraska.edu, Alan Tomking, Public Policy Center, atomkins@nebraska.edu 
Description

Nebraska’s native prairies are a valued resource and under constant anthropogenic demand and degradation. By engaging land owners in voluntary programs, the Platte River Habitat Partnership aims to restore and enhance this important natural resource. In this project, the Public Policy Center conducted a survey to assess land owners’ perceptions of the Platte River Habitat Partnership to help direct the Partnership’s second phase. Specifically, land owners who live in the region covered by the Partnership but did not participate, and those that did participate in the Partnership were surveyed in order to answer four key questions: 1. How knowledgeable are these land owners about the Partnership? 2. What is the nature of these land owners’ interactions with the Partnership? 3. How is the Partnership itself generally perceived by these land owners? 4. What would encourage land owners who had not participated in the Partnership to participate?

Project Support The Nature Conservancy
Project Website http://ppc.unl.edu/project/PlatteRiverHabitatPartnershipSurvey
Report PRHP_Report.pdf
Current Status Completed
Topic Wastewater
Project's Primary Contact Information
Name Bartelt-Hunt, Shannon
Unit Civil Engineering
Email sbartelt2@unl.edu
Phone 402-554-3868
Web Page http://www.engineering.unl.edu/civil/faculty/ShannonBartelt-Hunt.shtml
Project Information
Title The occurrence of illicit and therapeutic pharmaceuticals in wastewater effluent and surface waters in Nebraska
Other(s) Daniel D. Snow, School of Natural Resources, dsnow1@unl.edu; Teyona Damon; Johnette Shockley; Kyle Hoagland, School of Natural Resources, khoagland1@unl.edu 
Description The occurrence and estimated concentration of twenty illicit and therapeutic pharmaceuticals and metabolites in surface waters influenced by wastewater treatment plant (WWTP) discharge and in wastewater effluents in Nebraska were determined using Polar Organic Chemical Integrative Samplers (POCIS). Samplers were installed in rivers upstream and downstream of treated WWTP discharge at Lincoln, Grand Island, and Columbus, downstream of Hastings' WWTP discharge, and from Omaha's effluent channel just prior to it being discharged into the Missouri River. Based on differences in estimated concentrations determined from pharmaceuticals recovered from POCIS, WWTP effluent was found to be a significant source of pharmaceutical loading to the receiving waters. Effluents from WWTPs with trickling filters or trickling filters in parallel with activated sludge resulted in the highest observed in-stream pharmaceutical concentrations. Azithromycin, caffeine, 1,7 - dimethylzanthine, carbamazepine, cotinine, DEET, diphenhydramine, and sulfamethazine were detected at all locations. Methamphetamine, an illicit pharmaceutical, was detected at all but one of the sampling locations, representing only the second report of methamphetamine detected in WWTP effluent and in streams impacted by WWTP effluent.
Project Support n/a
Project Website
Report Bartelt-Hunt_Wastewater.pdf
Current Status Published in Environmental Pollution 2009 157:786-791
Topic Water Quality
Project's Primary Contact Information
Name Gitelson, Anatoly
Unit Center for Advanced Land Management Information Technologies
Email agitelson2@unl.edu
Phone 402-472-8386
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=39
Project Information
Title Using Remote Sensing to Detect the Threat of Blue-Green Algae
Description

Remote sensing is a useful tool for providing regulatory officials with the data necessary to make decisions regarding recreational waters. In 2005, CALMIT scientists undertook a collaborative effort with the Nebraska Department of Environmental Quality aimed at developing a tool to identify lakes where blue-green algae populations are present. The overall purpose was to incorporate those affected lakes into a toxic-algae alert procedure to provide early warnings to the public about the potential danger. This project also served to promote coordination and information sharing about toxic-algae issues among local units of government, lake associations, lake owners, and the public.

Both in-situ (close-range) and remote techniques were employed to detect and quantify in real-time the algal phytoplankton pigment concentration and composition (i.e., chlorophyll-a and phycocyanin in the water column). Two criteria were used to identify lakes and reservoirs with high probability of toxic algae: 1) chlorophyll concentration above 50 mg/m3; and 2) existence of blue green algae (the phycocyanin absorption feature has been used to indicate remotely the presence of blue-green algae). These criteria were tested by analytical assessment of toxic algae and the tests were positive: when the sensor systems indicated high probability of toxins, they were found in water samples.

Project Support Nebraska Department of Environmental Quality
Project Website http://www.calmit.unl.edu/research.php
Report
Current Status Completed
Topic Water Quality
Project's Primary Contact Information
Name Kolok, Alan
Unit Biology, UNO
Email akolok@mail.unomaha.edu
Phone 402-554-3545
Web Page http://www.unomaha.edu/envirotox/whoiam.php
Project Information
Title Occurrence and biological effect of exogenous steroids in the Elkhorn River, Nebraska
Other(s) Daniel D. Snow, School of Natural Resources, dsnow1@unl.edu; Satomi Kohno, Department of Zoology, University of Florida, kohno@ufl.edu; Marlo K. Sellin, Department of Biology, UNO, msellin@mail.unomaha.edu; Louis J. Guillette Jr., Department of Zoology, University of Florida, ljg@ufl.edu 
Description

Recent studies of surface waters in North America, Japan and Europe have reported the presence of steroidogenic agents as contaminants. This study had three objectives:

  1. to determine if steroidogenic compounds are present in the Elkhorn River,
  2. to determine if sediments collected from the Elkhorn River can act as a source of steroidogenic compounds to aquatic organisms, and
  3. to determine if site-specific biological effects are apparent in the hepatic gene expression of fathead minnows.

Evidence was obtained using three approaches:

  1. deployment of polar organic chemical integrative samplers (POCIS),
  2. deployment of caged fathead minnows, and
  3. a laboratory experiment in which POCIS and fish were exposed to sediments from the deployment sites.

Deployment sites included: the Elkhorn River immediately downstream from a Nebraska wastewater treatment plant, two waterways (Fisher Creek and Sand Creek) likely to be impacted by runoff from cattle feeding operations, and a reference site unlikely to be impacted by waste water inputs. The POCIS extracts were analyzed for a number of natural steroids and metabolites, as well as four different synthetic steroids: ethinylestradiol, zearalonol, 17-trenbolone and melengestrol acetate. Estrogenic and androgenic metabolites, as well as progesterone and trace levels of melengestrol acetate were detected in POCIS deployed at each site. POCIS deployed in tanks containing field sediments from the four sites did not accumulate the synthetic steroids except for ethinylestradiol, which was detected in the aquarium containing sediments collected near the wastewater treatment plant. Fish deployed in Sand Creek and at the wastewater treatment plant experienced significantly elevated levels of gene expression for two genes (StAR and P450scc) relative to those deployed in Fisher Creek. Fish exposed to the sediments collected from Sand Creek had significantly higher levels of hepatic StAR and P450scc gene expression than did fish exposed to sediments from the two other field sites, as well as the no-sediment control tank.

In conclusion:

  1. detectable levels of steroidogenic compounds were detected in passive samplers deployed in the Elkhorn River,
  2. sediments do not appear to be a significant source for steroidogenic compounds, and
  3. site-specific differences were found in mRNA expression among the different treatment groups of fish; however, a functional explanation for these differences is not readily forthcoming.
Project Support Nebraska Game and Parks Commission, U.S. Geological Survey's Section 104b Program as administered by the UNL Water Center, US Environmental Protection Agency Greater Opportunities Fellowship, Dr. Daniel Villeneuve, US Environmental Protection Agency
Project Website
Report Kolok_Elkhorn.pdf
Current Status Published in Science of the Total Environment 2007 388:104-115
Topic Water Quality
Project's Primary Contact Information
Name Kolok, Alan
Unit Biology, UNO
Email akolok@mail.unomaha.edu
Phone 402-554-3545
Web Page http://www.unomaha.edu/envirotox/whoiam.php
Project Information
Title The Watershed as A Conceptual Framework for the Study of Environmental and Human Health
Other(s) Cheryl L. Beseler, Department of Environmental, Agricultural and Occupational Health, UNMC, cbeseler@unmc.edu; Xun-Hong Chen, School of Natural Resources, xchen2@unl.edu; Patrick J. Shea, School of Natural Resources, pshea1@unl.edu 
Description

The watershed provides a physical basis for establishing linkages between aquatic contaminants, environmental health and human health. Current attempts to establish such linkages are limited by environmental and epidemiological constraints. Environmental limitations include difficulties in characterizing the temporal and spatial dynamics of agricultural runoff, in fully understanding the degradation and metabolism of these compounds in the environment, and in understanding complex mixtures. Epidemiological limitations include difficulties associated with the organization of risk factor data and uncertainty about which measurable endpoints are most appropriate for an agricultural setting. Nevertheless, the adoption of the watershed concept can alleviate some of these difficulties. From an environmental perspective, the watershed concept helps identify differences in land use and application of agrichemicals at a level of resolution relevant to human health outcomes. From an epidemiological perspective, the watershed concept places data into a construct with environmental relevance. This project uses the Elkhorn River watershed as a case study to show how the watershed can provide a conceptual framework for studies in environmental and human health.

Environmental sampling is necessary for evaluating exposure to hormone disrupting chemicals (HDCs); however, sampling is not systematic in time or space, nor does it represent the time frame necessary to adequately link it to human disease outcomes. Although data from municipal sources are available and reliable, countless private drinking water wells go untested and unmonitored. These wells may be in areas vulnerable to concentrated reservoirs of contaminants due to the soil type, infiltration rate, runoff potential, organic matter and erodibility coupled with land use in the region and the chemical properties of the contaminants introduced into the environment. The lack of a defined boundary and introduction of exposure heterogeneity is one of the primary reasons why associations to health outcomes cannot be shown in environmental epidemiological studies.

The use of the watershed provides a natural boundary and the potential within this boundary to obtain denominator data. Based on the characteristics of the watershed combined with sampling data, shared exposures can be identified and intermediate hypotheses tested using sentinel markers of exposure in fish and humans. Lastly, comparable groups identified in other watersheds with similar characteristics but different surrounding land uses can be used to replicate findings.

Project Support Department of Environmental, Agricultural and Occupational Health, University of Nebraska Medical Center
Project Website
Report Kolok_Watershed.pdf
Current Status Published in Environmental Health Insights 2009 3:1-10
Topic Water Quality
Project's Primary Contact Information
Name Thomas, Steve
Unit School of Natural Resources
Email sthomas5@unl.edu
Phone 402-472-4030
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=745
Project Information
Title Understanding Cyanobacteria Blooms in Willow Creek Reservoir
Other(s) Amy Burgin, School of Natural Resources, aburgin2@unl.edu 
Description

Cyanobacteria, also known as blue-green or toxic algae, pose a health threat to people and animals that come in contact with lake water suffering from an algal bloom and result in economic hardships to local communities that depend on recreational dollars spent at lakes experiencing blooms. Willow Creek Reservoir near Pierce, Nebraska is one such lake that has experienced several cyanobacterial blooms since its construction in 1984. When placed on alert status due to cyanobacteria levels, the estimated impact is an 80% drop in boaters and beach goers, a 33% drop in camper numbers, and a 50% drop in angler visitation. Local stakeholders such as the Lower Elkhorn Natural Resources District wish to reduce these blooms to the extent possible. However, in order to do so, a better understanding of the causes of those blooms needs to be established.

This project proposes to achieve that understanding by: (1) characterizing cyanobacteria levels in Willow Creek Reservoir; (2) characterizing potential causes of those cyanobacteria blooms; (3) identifying relations between cyanobacteria levels in Willow Creek Reservoir and potential causes; and (4) sharing those findings with the public and local stakeholders to provide guidance for managing cyanobacteria in Willow Creek Reservoir. These tasks will be accomplished over a 3-year period through a collaborative effort between six separate agencies and by leveraging funding from local, state, and federal sources in addition to those requested from the Nebraska Environmental Trust Fund.

Project Support Lower Elkhorn Natural Resources District
Project Website
Report
Current Status Underway
Topic Watershed Management
Project's Primary Contact Information
Name Jenkins, Allan
Unit Economics
Email
Phone
Web Page
Project Information
Title Middle Platte Socioeconomic Overview
Description This report was published in February 1999 and designed to provide a common body of knowledge to all groups engaged in decisions regarding the Platte River. Recognizing that different decision-makers have different levels of prior knowledge concerning the Platte River, the author attempted to create a document suitable for a range of audiences that also facilitated discussion.
Project Support U.S. Environmental Protection Agency
Project Website http://watercenter.unl.edu/PRS/PlatteRiverReports/The%20Platte%20Watershed%20Program.pdf
Report
Current Status Completed
Topic Watershed Project
Project's Primary Contact Information
Name Shelton, David
Unit Biological Systems Engineering and Extension Agricultural Engineer
Email dshelton2@unl.edu
Phone 402-584-3849
Web Page http://bse.unl.edu/dshelton2
Project Information
Title Shell Creek Watershed Improvement Project
Other(s) Rod Wilke, Northeast REC, rwilke2@unl.edu 
Description

Through a several-entity partnership best management practices (BMPs) are being adopted or installed in the Shell Creek Watershed, helping to protect the quality of both surface and ground water. Shell Creek drains approximately 300,000 acres in parts of Boone, Colfax, Madison, and Platte counties, and has a history of flooding that has frequently caused damage along its length. Shell Creek has been on the Nebraska's list of impaired waters for fecal coliform bacteria and other impairments. Soil erosion is a major problem throughout the watershed.

Using a variety of delivery methods, cooperative educational programming led by Extension in the Shell Creek Watershed primarily focuses on: the water quality benefits of (BMPs, management needed to ensure BMP success, and the availability of enhanced and/or special cost-share funding for BMP adoption or installation within targeted areas of the watershed. Key accomplishments since the project was initiated in September 2004 include:

  • Twenty-nine illegal wells were properly decommissioned thus protecting water quality and human health and safety. One of these was a 36-inch diameter, 50-foot deep dug well that the landowner discovered when the front wheel of his tractor dropped into it. He did not know that this well was there, despite having grown up on that farm.
  • Thirty-one sub-standard or failing septic systems were upgraded to current standards. Before upgrading, septic tank effluent was surfacing in at least two of these systems, while another system had no drainfield and the effluent was piped directly to Shell Creek. Over two million gallons of domestic wastewater annually is now being properly treated because of these upgrades, substantially reducing the risks to public health and the environment.
  • Forty-eight producers contracted for the implementation of no-till planting on nearly 6,600 acres of cropland for a period of at least five years. This conversion will result in an estimated soil erosion reduction of over 328,500 tons annually.
  • Fifty-two contracts for buffers and other structural practices were installed on a total of 215 acres of cropland. The conversion of this land to permanent vegetative cover will reduce soil erosion on the order of 3,200 tons per year and provide excellent wildlife habitat. These practices and additional benefits include:
  • five stream-side filter strips installed by three individuals on 38.1 acres that will filter the runoff from approximately 1,200 upslope acres;
  • a 6.0 acre riparian forest buffer that will filter the runoff from approximately 200 upslope acres and may provide future income from the sale of some of the trees that were planted;
  • thirteen grassed waterways, totaling 36.3 acres, installed by six individuals, will filter and direct the runoff from approximately 400 acres of upslope cropland;
  • a nearly 5-acre field windbreak that may contribute to increased yields by reducing wind velocity on the adjacent crop;
  • three buffers that provide 31.9 acres of habitat especially suited for northern bobwhite quail;
  • and contour buffers totaling 17.2 acres on two farms that will help reduce soil erosion by slowing the flow of runoff water and trapping sediment carried by the runoff.

In aggregate, over $1 million in incentive, land rental, cost-sharing, and other payments is being infused into the Shell Creek Watershed as a direct result of this programming. These payments include:

  • $289,800 for the implementation of no-till planting systems and associated management practices.
  • $198,500 for the installation of various types of conservation buffers.
  • $40,700 to upgrade failing septic systems to meet current standards.
  • $10,050 to decommission out-of-service water wells.

This educational effort and special cost-share funding is a partnership among USDA Cooperative State Research, Education, and Extension Service; UNL Extension; PrairieLand Resource, Conservation and Development Council; Shell Creek Watershed Improvement Group; Natural Resources Conservation Service; Pheasants Forever; and the Lower Platte North Natural Resources District.

Project Support Nebraska Department of Environmental Quality Section 319 Program (U.S. Environmental Protection Agency), Nebraska Environmental Trust.
Project Website http://www.newman.esu8.org/vnews/display.v/SEC/Activities%3E%3EWatershed%20Project
Report Shelton_Buffers.pdf
Current Status Completed
Topic Wildlife
Project's Primary Contact Information
Name Anderson, Tara
Unit School of Natural Resources
Email taraleeanderson@huskers.unl.edu
Phone 402-432-5233
Web Page http://snr.unl.edu/aboutus/who/people/undergrad/anderson-tara.asp
Project Information
Title Population Dynamics of Shovelnose Sturgeon in the Lower Platte River
Other(s) Mark A. Pegg, School of Natural Resources, mpegg2@unl.edu; Martin Hamel, School of Natural Resources, mhamel2@unl.edu; Jeremy Hammen, School of Natural Resources, hammenj@huskers.unl.edu 
Description

Reduction in range and abundance of shovelnose sturgeon Scaphirhynchus platorynchus over the past century has been primarily attributed to critical habitat loss, poor water quality, and overharvest. These declines have led to concerns about populations of this once ubiquitous sturgeon species in large rivers throughout their Mississippi River Basin-wide range. However, detailed analyses of shovelnose sturgeon populations do not exist in several potentially important portions of their range, such as the Platte River, Nebraska. Shovelnose sturgeon, for example have been documented in the Lower Platte River, Nebraska (i.e., Columbus, NE to Plattsmouth, NE), but little is known about their population dynamics. Additionally, indications that seasonal fishing pressure in the Lower Platte River may affect local abundances, growth and mortality rates, and age at maturity of shovelnose sturgeon create a need for obtaining more specific population information. Researchers have initiated a five year study of the shovelnose sturgeon population in the Lower Platte River to characterize the abundance, distribution, demography, population dynamics, and genetics of shovelnose sturgeon. For preliminary data from the first year of sampling, view the presentation via the website like below.

Click here to read Tara Anderson's Master's Thesis on Shovelnose Sturgeon Population Dynamics

Project Support Nebraska Game and Parks Commission
Project Website http://watercenter.unl.edu/PRS/PRS2009/PPTs/Anderson%20Tara.pdf
Report
Current Status Completed
Topic Wildlife
Project's Primary Contact Information
Name Pegg, Mark (advisor)
Unit Nebraska Cooperative Fish and Wildlife Research Unit
Email mpegg2@unl.edu
Phone 402-472-6824
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=739
Project Information
Title Catfish Population Dynamics in the Platte River, Nebraska
Other(s) Tony J. Barada, abarada2@unl.edu 
Description

Catfish angling is popular throughout the United States and catfish are the most sought after fish species in the Platte River. However, catfish management in the Platte River is minimal as little is known about current populations. The objective of this study was to determine the current status of channel catfish and flathead catfish populations in the central and lower Platte River. Specifically, the study evaluated population characteristics including relative abundance, size structure, condition, age, growth and mortality.

Channel catfish are much more abundant than flathead catfish in the Platte River. The current Platte River channel catfish population appears to be average, comparable to many Nebraska and Midwestern rivers. Population characteristics displayed considerable variation along the Platte River and some longitudinal patterns were evident. Channel catfish in the central Platte River had lower relative abundances, higher condition, greater size structure, faster growth and lower mortality compared to lower Platte River channel catfish. Key factors likely influencing differences in channel catfish population characteristics are prey availability, flow modifications, habitat characteristics, tributary inflows and angler exploitation. Water manipulations from the Loup River Power Canal were also identified as a possible negative influence on lower Platte River channel catfish populations because hydropeaking is likely creating a stressful environment. However, channel catfish in the central Platte River appear to have benefited from recent high flows that likely increased productivity and food availability in the central Platte River.

Tony Barada's Master's Thesis on Catfish Population Dynamics in the Platte River

Project Support Nebraska Game and Parks Commission, Federal Aid in Sportfish Restoration
Project Website
Report
Current Status Graduate thesis project completed - thesis available at UNL CY Thompson Library (Call # LD3656 2009 .B373)