NU Water-Related Research in Seward County

The list below shows water-related research being conducted within your district or that affects your district. They are sorted by water topic, then by primary contact's last name.

Displaying 12 records found for Seward County


Topic Climate
Project's Primary Contact Information
Name Hu, Qi (Steve)
Unit School of Natural Resources
Email qhu2@unl.edu
Phone 402-472-6642
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=54
Project Information
Title Understanding Farmers' Forecast Use from Their Beliefs, Values, Social Norms, and Perceived Obstacles
Other(s) Lisa M. Pytlik Zillig, Center for Instructional Innovation, lpytlikzillig2@unl.edu; Gary D. Lynne, Agricultural Economics, glynne1@unl.edu; Alan J. Tomkins, Public Policy Center, atomkins2@unl.edu; William J. Waltman; Michael J. Hayes, School of Natural Resources, mhayes2@unl.edu; Kenneth G. Hubbard, School of Natural Resources, khubbard1@unl.edu; Ikrom Artikov; Stacey J. Hoffman, Public Policy Center, shoffman3@unl.edu; Donald A. Wilhite, School of Natural Resources, dwilhite2@unl.edu 
Description

Although the accuracy of weather and climate forecasts is continuously improving and new information retrieved from climate data is adding to the understanding of climate variation, use of the forecasts and climate information by farmers in farming decisions has changed little. This lack of change may result from knowledge barriers and psychological, social, and economic factors that undermine farmer motivation to use forecasts and climate information. According to the theory of planned behavior (TPB), the motivation to use forecasts may arise from personal attitudes, social norms, and perceived control or ability to use forecasts in specific decisions. These attributes are examined using data from a survey designed around the TPB and conducted among farming communities in Otoe, Seward and Fillmore counties. These counties were chosen to represent dryland, mixed dryland and irrigated, and mostly irrigated cropping systems typical in the western U.S. Corn Belt region.

There were three major findings:

  1. the utility and value of the forecasts for farming decisions as perceived by farmers are, on average, around 3.0 on a 0-7 scale, indicating much room to improve attitudes toward the forecast value.
  2. The use of forecasts by farmers to influence decisions is likely affected by several social groups that can provide "expert viewpoints" on forecast use.
  3. A major obstacle, next to forecast accuracy, is the perceived identity and reliability of the forecast makers. Given the rapidly increasing number of forecasts in this growing service business, the ambiguous identity of forecast providers may have left farmers confused and may have prevented them from developing both trust in forecasts and skills to use them.

These findings shed light on productive avenues for increasing the influence of forecasts, which may lead to greater farming productivity. In addition, this study establishes a set of reference points that can be used for comparisons with future studies to quantify changes in forecast use and influence.

Project Support US Department of Commerce National Oceanic and Atmospheric Administration's Human Dimensions in Global Change Program
Project Website
Report Hu_etal_JAMC_2006.pdf
Current Status Published in the Journal of Applied Meteorology and Climatology 2006 45:1190-1201
Topic Climate
Project's Primary Contact Information
Name Lynne, Gary
Unit Agricultural Economics
Email glynne1@unl.edu
Phone 402-472-8281
Web Page http://agecon.unl.edu/lynne
Project Information
Title Understanding the Influence of Climate Forecasts on Farmer Decisions as Planned Behavior
Other(s) Ikrom Artikov; Stacey J. Hoffman, Public Policy Center, shoffman3@unl.edu; Lisa M. Pytlik Zillig, Center for Instructional Innovation, lpytlikzillig2@unl.edu; (Steve) Qi Hu, School of Natural Resources, qhu2@unl.edu; Alan J. Tomkins, Public Policy Center, atomkins2@unl.edu; Kenneth G. Hubbard, School of Natural Resources, khubbard1@unl.edu; Michael J. Hayes, School of Natural Resources, mhayes2@unl.edu; and William J. Waltman 
Description

Results of a set of four regression models applied to recent survey data of farmers in Otoe, Seward and Fillmore counties suggest the causes that drive farmer intentions of using weather and climate information and forecasts in farming decisions. The model results quantify the relative importance of attitude, social norm, perceived behavioral control, and financial capability in explaining the influence of climate-conditions information and short-term and long-term forecasts on agronomic, crop insurance, and crop marketing decisions.

Attitude, serving as a proxy for the utility gained from the use of such information, had the most profound positive influence on the outcome of all the decisions, followed by norms. The norms in the community, as a proxy for the utility gained from allowing oneself to be influenced by others, played a larger role in agronomic decisions than in insurance or marketing decisions. In addition, the interaction of controllability (accuracy, availability, reliability, timeliness of weather and climate information), self-efficacy (farmer ability and understanding), and general preference for control was shown to be a substantive cause. Yet control variables also have an economic side: The farm-sales variable as a measure of financial ability and motivation intensified and clarified the role of control while also enhancing the statistical robustness of the attitude and norms variables in better clarifying how they drive the influence. Overall, the integrated model of planned behavior from social psychology and derived demand from economics, that is, the "planned demand model," is more powerful than models based on either of these approaches alone. Taken together, these results suggest that the "human dimension" needs to be better recognized so as to improve effective use of climate and weather forecasts and information for farming decision making.

Project Support US Department of Commerce National Oceanic and Atmospheric Administration's Human Dimensions in Global Change Program
Project Website
Report Lynne_Climate.pdf
Current Status Published in the Journal of Applied Meteorology and Climatology 2006 45:1202-1214
Topic Crop Water Use and Water Use Efficiency
Project's Primary Contact Information
Name Allen, Craig (advisor)
Unit Nebraska Cooperative Fish and Wildlife Research Unit
Email callen3@unl.edu
Phone 402-472-0229
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=647
Project Information
Title Agricultural Landuse Change Impacts on Bioenergy Production, Avifauna and Water Use in Nebraska's Rainwater Basin
Other(s) Daniel Uden, School of Natural Resources, daniel.uden@huskers.unl.edu; Rob Mitchell, USDA-ARS; Tim McCoy, Nebraska Game and Parks Wildlife Division; Qinfeng Guan, School of Natural Resources, qguan2@unl.edu 
Description

This study addressed how the conversion of marginally productive agricultural lands in the Rainwater Basin region of south-central Nebraska, U.S.A. to bioenergy switchgrass (Panicum virgatum) might impact ethanol production, grassland bird populations and agricultural groundwater withdrawals. This study also used multi-model inference to develop predictive models explaining annual variation in springtime wetland occurrence and flooded area in the Rainwater Basin.

Results suggest that cellulosic ethanol production from switchgrass and residual maize (Zea mays) stover within existing starch-based ethanol plant service areas is feasible at current feedstock yields, removal rates and bioconversion efficiencies. Throughout the Rainwater Basin, the replacement of marginally productive rowcrop fields with switchgrass could increase ethanol production, conserve groundwater and benefit grassland birds under novel future climatic conditions. However, converting Conservation Reserve Program (CRP) grasslands to switchgrass could be detrimental to grassland bird populations. Predictive wetland inundation models suggest that surrounding agricultural landuse, wetland hydric footprint shape complexity, and autumn and winter precipitation and temperature are strong drivers of springtime wetland occurrence and flooded area in the Rainwater Basin.

Under a modest change scenario, 350 wells on rowcrop fields converted to switchgrass could cease groundwater pumping, conserving 52,064 acre-feet of water annually (2.6% of regional pumping capacity).

Under a extreme change scenario, 737 wells on rowcrop fields converted to switchgrass could cease groundwater pumping, conserving 112,827 acre-feet of water annually (5.6% of regional pumping capacity).

In areas at higher risk for additional irrigation limitations, agriculture groundwater use under the modest change and extreme change scenarios could decrease by 9.6% and 19.1%, respectively.

Click here to read a journal article about this research

Project Support U.S. Geological Survey, Great Plains Landscape Conservation Cooperative
Project Website http://snr.unl.edu/aboutus/who/people/graduatestudent-member.asp?pid=1373#tab1
Report Uden Landuse Change.pdf
Current Status Completed
Topic Drought
Project's Primary Contact Information
Name Hanson, Paul
Unit School of Natural Resources
Email phanson2@unl.edu
Phone 402-472-7762
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=758
Project Information
Title Pre-Historic Drought Records from the Eastern Platte River Valley
Other(s) R. Matt Joeckel, School of Natural Resources, rjoeckel3@unl.edu; Aaron Young, School of Natural Resources, ayoung3@unl.edu 
Description Recent studies have related large-scale dune activity in the Nebraska Sandhills and elsewhere on the western Great Plains to prehistoric megadroughts. At the eastern margin of the Great Plains, however, little or no effort has been expended toward identifying the impacts and severity of these climatic events. The eastern margin of the Great Plains should be of particular interest in paleclimate studies because it represents an important biogeographic boundary that may have shifted over time. In dunes around the present confluence of the Loup and Platte Rivers near Duncan, Nebraska, optical dating contrains, for the first time, the chronology of dune activity in the central-eastern margin of the Great Plains. A total of 17 optical age estimates taken from dune sediments clearly indicate two significant periods of dune activation at 5,100 to 3,500 years ago and 850-500 years ago. These reconstructed time intervals overlap both periods of large-scale dune activity in the Nebraska Sandhills and ancient droughts identified from other paleoclimate proxy records on the western Great Plains. The agreement between results from the eastern margin of the Great Plains and data from farther west indicate that megadroughts were truly regional in their effect. In order to further test a hypothesis of geographically-widespread megadrought effects, future work will date other dune deposits in eastern Nebraska from sites along the Loup and Elkhorn Rivers, as well as dunes in east-central Kansas and western Iowa.
Project Support United States Geological Survey Statemap Program
Project Website
Report Hanson Eastern Platte Valley.pdf
Current Status Published in Geomorphology 103 (2009) 555-561
Topic Extension
Project's Primary Contact Information
Name Skipton, Sharon
Unit Southeast Research and Extension Center
Email sskipton1@unl.edu
Phone 402-472-3662
Web Page http://www.southeast.unl.edu/staffdir/Skipton_Sharon
Project Information
Title Southeast Research and Extension Center
Other(s) Gary Zoubek, York County Extension, gzoubek@unl.edu 
Description Each day University of Nebraska Extension makes a difference in the lives of adults and youth. The faculty and staff in the Southeast Research and Extension Center and the 28 County Offices work to bring relevant researched based information to people in communities, towns and urban centers. Our efforts rely increasingly on partnerships with government agencies, business, industry, schools and community organizations. Working together with our partners Extension strives to strengthen the social, economic and environmental base of Nebraska's communities. Our programs must be ever-changing as Extension listens and responds to issues as they evolve. The Southeast Research and Extension District is unique because it serves both urban and rural communities Nebraska. The faculty and staff are committed to bringing the resources of the University and its research based information to the individuals and communities of Southeast Nebraska.
Project Support Varies according to program and project - for more information see http://www.southeast.unl.edu/
Project Website http://www.southeast.unl.edu/
Report
Current Status Continuous
Topic Hydrology
Project's Primary Contact Information
Name Chen, Xun-Hong
Unit School of Natural Resources
Email xchen2@unl.edu
Phone 402-472-0772
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=19
Project Information
Title Investigation of Stream-Aquifer Hydrologic Relationship for Clear Creek in Polk and Butler Counties
Other(s) Weihong Dong, Jilin University; Zhaowei Wang, School of Natural Resources; Gengxin Ou, School of Natural Resources; Can Liu, School of Natural Resources, can.liu1989@huskers.unl.edu 
Description

Vertical hydraulic conductivities (Kv) of both streambed and point bars can influence water and solute exchange between streams and surrounding groundwater systems. The sediments in point bars are relatively young compared to the older sediments in the adjacent aquifers but slightly older compared to submerged streambeds. Thus, the permeability in point bar sediments can be different not only from regional aquifer but also from modern streambed. However, there is a lack of detailed studies that document spatial variability of vertical hydraulic conductivity in point bars of meandering streams. In this study, the authors proposed an in situ permeameter test method to measure vertical hydraulic conductivity of the two point bars in Clear Creek, Nebraska, USA. We compared the Kv values in streambed and adjacent point bars through 45 test locations in the two point bars and 51 test locations in the streambed.

The Kv values in the point bars were lower than those in the streambed. Kruskal–Wallis test confirmed that the Kv values from the point bars and from the channel came from two statistically different populations. Within a point bar, the Kv values were higher along the point bar edges than those from inner point bars. Grain size analysis indicated that slightly more silt and clay particles existed in sediments from inner point bars, compared to that from streambed and from locations near the point bar edges. While point bars are the deposits of the adjacent channel, the comparison of two groups of Kv values suggests that post-depositional processes had an effect on the evolution of Kv from channel to point bars in fluvial deposits.

We believed that the transport of fine particles and the gas ebullition in this gaining stream had significant effects on the distribution of Kv values in a streambed-point bar system. With the ageing of deposition in a floodplain, the permeability of point bar sediments can likely decrease due to reduced effects of the upward flow and gas ebullition.

Project Support Upper Big Blue Natural Resources District, Chinese Ministry of Education, National Natural Science Foundation of China
Project Website
Report Chen_Hydraulic_Conductivity.pdf
Current Status Completed
Pic 1 Project Image
Pic Caption 1 Map showing the study site in Clear Creek, Nebraska 
Pic 2 Project Image 2
Pic Caption 2 Schematic for the in situ permeameter test in the point bars 
Topic Hydrology
Project's Primary Contact Information
Name Chen, Xun-Hong
Unit School of Natural Resources
Email xchen2@unl.edu
Phone 402-472-0772
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=19
Project Information
Title Hydrologic Connections in the Big and Little Blue River Basins
Other(s) Cheng Cheng, School of Natural Resources, ccheng2@unl.edu 
Description Over extraction of groundwater near a stream can lower stream stage and induce streamflow depletion when the stream and aquifer are hydrologically connected. The Little Blue River Basin is an area of intensive groundwater development for irrigation, and the streamflow depletion in this basin was determined by an analog model (Emery, 1966). However, the post audit of the model (Alley and Emery, 1986) suggested that the decline of water-levels was overestimated and streamflow depletion was underestimated. Therefore, it is necessary to re-evaluate stream-aquifer interactions in the basin. In this study, an area is chosen for this analysis from the basin and three main streams -- the Little Blue River, Big Sandy Creek, and Spring Creek are included. Channel sediments and structures play an important role in determining stream-aquifer interactions. Firstly, field and laboratory methods including geoprobe logging and permeameter tests are utilized to investigate the channel deposits in the three main streams in the Little Blue River Basin. Results show that channels have low hydraulic-permeable layers which reduce their hydraulic connections to the adjacent aquifers. Secondly, a groundwater flow model is constructed to identify the hydraulic properties of the aquifer and evaluate streamflow depletion under groundwater withdrawals in the study area. Modeling results indicate that streamflow depletion is very low and aquifer storage loss is the main source of groundwater pumpage.
Project Support Upper Big Blue Natural Resources Distrect, Lower Big Blue Natural Resources District, Little Blue Natural Resources District
Project Website
Report
Current Status Completed
Topic Hydrology
Project's Primary Contact Information
Name Korus, Jesse
Unit Conservation and Survey Division
Email jkorus3@unl.edu
Phone 402-472-7561
Web Page http://snr.unl.edu/aboutus/who/people/staff-member.asp?pid=1010
Project Information
Title Eastern Nebraska Water Resources Assessment (ENWRA)
Other(s)

Paul Hanson, School of Natural Resources / Conservation and Survey Division, phanson2@unl.edu; Sue Lackey, School of Natural Resources / Conservation and Survey Divison, slackey1@unl.edu; Matt Marxsen, School of Natural Resources / Conservation and Survey Division, mmarxsen2@unl.edu

Dana Divine, ENWRA Project Coordinator, ddivine@lpsnrd.org

Visit the Nebraska Maps and More website (http://nebraskamaps.unl.edu/home.asp) to order an excellent publication that describes this project more in-depth, Bulletin 1: Eastern Nebraska Water Resources Assessment (ENWRA) Introduction to a Hydrogeological Study.

 
Description

Eastern Nebraska contains 70% of the state's population, but is most limited in terms of the state's groundwater supplies. The population in this region is expected to increase; thus the need for reliable water supplies is paramount. Natural resources districts (NRDs), charged with ground water management in Nebraska, seek to improve their management plans in response to growing populations, hydrologic drought, and new conjunctive management laws. Detailed mapping and characterization is necessary to delineate aquifers, assess their degree of hydrologic connection with streams and other aquifers, and better predict water quality and quantity.

In a collaborative effort between local, state, and federal agencies, the ENWRA project has been initiated to gain a clearer understanding of the region's groundwater and interconnected surface water resources. These resources can be difficult to characterize because of the complex geology created by past glaciations. Acquiring geologic and hydrologic data in the eastern, or glaciated, part of Nebraska requires the use of multiple, innovative techniques. Currently, little is known about which techniques are most effective and feasible. Once identified, the most effective and feasible tools will be used to provide data, interpretations, and models for improved water resources management.

The ENWRA group has established three pilot test sites for intensive study using a variety of investigative techniques. The goal of the initial work being done at the three pilot test sites is to determine the location, extent, and connectivity of aquifers with surface waters, with the hope of expanding these investigative techniques across other portions of eastern Nebraska. The pilot test sites are located near Oakland, Ashland, and Firth with each site exhibiting differing geologic conditions. The techniques that will be utilized in the study include: 1) helicopter electromagnetic (HEM) surveys; 2) ground-based geophysical surveys; 3) test hole drilling; and 4) geochemical analysis, just to name a few. So far HEM surveys were completed over approximately one township at each site. Other techniques were used to provide "ground truth" data to support the HEM interpretations.

The agencies involved in the ENWRA are:

  • Lower Platte South Natural Resources District
  • Lower Platte North Natural Resources District
  • Papio Missouri River Natural Resources District
  • Lower Elkhorn Natural Resources District
  • Lewis and Clark Natural Resources District
  • Nemaha Natural Resources District
  • United States Geological Survey
  • University of Nebraska Lincoln Conservation and Survey Division
  • Nebraska Department of Natural Resources
  • Nebraska Department of Environmental Quality
Project Support Nebraska Department of Natural Resources Interrelated Water Management Plan/Program
Project Website http://www.enwra.org/
Report
Current Status HEM surveys are complete and 3-D aquifer diagrams have been prepared. Report Status: Ashland area report has been prepared and is under review and the Firth area report is being written.
Pic 1 Project Image
Pic Caption 1 Eastern Nebraska Water Resources Assessment (ENWRA) Study Sites. 
Topic Riparian Vegetation Water Use
Project's Primary Contact Information
Name Kilic, Ayse
Unit Center for Advanced Land Management Information Technologies
Email akilic@unl.edu
Phone 402-472-5351
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=860
Project Information
Title Estimating Riparian Water Use: An Application of Remote Sensing
Description The goal of this project is to quantify riparian evapotranspiration (ET) by utilzing satellite and air-borne remote sensing data on selected watersheds in the North Platte River. The results will be used to develop guidelines on riparian water use.
Project Support UNL Office of Research Layman Award
Project Website
Report
Current Status Completed
Topic Water Quality
Project's Primary Contact Information
Name Riens, John
Unit Wisconsin Ecological Services Field Office, U.S. Fish & Wildlife Service
Email John_Riens@fws.gov
Phone 541-885-2503
Web Page http://www.fws.gov/
Project Information
Title Macroinvertebrate Response to Buffer Zone Quality in the Rainwater Basin Wetlands of Nebraska
Other(s) W. Wyatt Hoback, Biology UNK, hobackww@unk.edu; Matt Schwarz, U.S. Fish & Wildlife Service 
Description

The Rainwater Basin is one of the most endangered wetland ecosystems in North America. This ecosystem is critical to many species including migratory waterfowl. Land use and runnoff from agriculture and cattle confinement operations are likely to be reducing the basin's health and diversity, however little information exists concerning macroinvertebrates. Twenty-two locations were assessed for water quality parameters, vegetation composition, and macroinvertebrates identified to genus. Samples were collected biweekly starting in April through July for three years. Macroinvertebrate diversity was impacted in areas with little buffer although the effects were not pronounced. Institution of a more effective vegetative buffers strip may reverse this trend to improve ecosystem quality and provide for invertebrate resources for migratory birds.

Click here to see a poster about this research

Project Support n/a
Project Website
Report
Current Status Completed
Topic Water Quality
Project's Primary Contact Information
Name Tang, Zhenghong
Unit Architecture
Email ztang2@unl.edu
Phone 402-472-9281
Web Page http://architecture.unl.edu/people/bios/tang_zhenghong.shtml
Project Information
Title Assessment of Sedimentation and Water Quality Conditions in the Rainwater Basin's Playa Wetlands
Other(s) Mark Kuzila, School of Natural Resources, mkuzila1@unl.edu; Xu Li, Department of Civil Engineering, xuli@unl.edu; Amy Burgin, School of Natural Resources, aburgin2@unl.edu 
Description

The overall goal of this project is to prioritize watershed restoration/acquisition programs in the Rainwater Basin (RWB) by examining playa wetlands’ sedimentation and water quality conditions using the Revised Universal Soil Loss Equation 2 (RUSLE2) and the fly ash technology.

Three specific tasks are included in this project:

  1. Calculate and map the sedimentation rates and the age of deposition for all playa wetlands in RWB
  2. Consolidate existing water quality data of the RWB playa wetlands and evaluate the key factors influencing playa wetland water quality
  3. Assess the effects of sedimentation control practices and prioritize future watershed restoration/acquisition programs

The final products of this project include:

  1. An atlas of wetland sedimentation maps and a risk report highlighting the areas in watersheds with the highest sedimentation rates
  2. A geodatabase and an evaluation report on the water quality conditions of the playa wetlands in the RWB
  3. A written assessment report for sedimentation control practices and a watershed index to prioritize future conservation/acquisition programs
Project Support U.S. Environmental Protection Agency
Project Website http://www.unl.edu/playawetlands/
Report
Current Status Underway
Topic Wetlands
Project's Primary Contact Information
Name Tang, Zhenghong
Unit Architecture
Email ztang2@unl.edu
Phone 402-472-9281
Web Page http://architecture.unl.edu/people/bios/tang_zhenghong.shtml
Project Information
Title Developing LiDAR-Derived Wetland Maps To Assess Conservation Design Practices For Playa Wetlands In Rainwater Basin
Other(s) Ed Harvey, School of Natural Resources, feharvey1@unl.edu; Xu Li, Department of Civil Engineering 
Description The overall goal of this project is to provide wetland managers with topographically-correct 3-D wetland maps to prioritize wetland conservation efforts and assess wetland conservation design practices. This project addresses three specific tasks for the playa wetlands: 1) Establish accurate, topographically-correct, 3-D wetland maps to relate weather conditions and wetland functions; 2) Develop a measurable Restorable Wetland Index to prioritize playa wetland and drainages conservation; 3) Assess wetland conservation design practices for watershed-based wetland conservation. This research will use high-resolution Light Detections And Ranging (LiDAR) data to create next-generation wetland maps for playa wetlands. The research provides the missing link in conservation design as these data will provide accurate elevation measures to delineate watershed extent and determine the impact of individual hydrologic modifications. This project will be one of the first to integrate LiDAR data and a hydrologic modifications datasets to find the relations of current weather conditions and wetland functions. This project provides reliable, accurate wetland spatial parameters to prioritize playa wetland conservation and assess the effectiveness of existing wetland conservation design practices. The wetland conservation design tools and protocols will be examined in two pilot counties in Nebraska. The intellectual merit of the research is based on advancing knowledge linkage of wetland mapping technologies and wetland function modifications, and showing how to adapt wetland conservation designs. The outputs from this project provide practical protocols for state/regional/local wetland managers and thus ensure "no net loss" in quality and quantity of wetlands.
Project Support US EPA
Project Website
Report
Current Status Completed