NU Water-Related Research in York County

The list below shows water-related research being conducted within your district or that affects your district. They are sorted by water topic, then by primary contact's last name.

Displaying 11 records found for York County


Topic Computer Science
Project's Primary Contact Information
Name Samal, Ashok
Unit Department of Computer Science and Engineering
Email asamal1@unl.edu
Phone 402-472-2217
Web Page http://cse-apps.unl.edu/facdb/users/12/details
Project Information
Title Knowledge Discovery and Information Fusion Tools for Collaborative Systems to Adaptively Manage Uncertain Hydrological Resources
Other(s) Xun-Hong Chen, School of Natural Resources, xchen2@unl.edu; Alan J. Tomkins, Public Policy Center, atomkins2@unl.edu; Leen-Kiat Soh, Computer Science and Engineering, lksoh@cse.unl.edu; Sandra Zellmer, Law, szellmer2@unl.edu 
Description

There is a critical need to accurately and efficiently assess and manage water quantity. This is a challenge because water management is conducted under conditions of uncertainty about current and future water resources. Adaptive water management has become the policy heuristic for flexible water management that responds to ever changing physical and social demands. The central challenge of the Adaptive Management approach is the need to quantify the uncertainty in observed water measurements.

The long-term goal of this project is to develop intelligent, scalable decision support tools for collaborative systems that incorporate uncertainty to analyze and integrate hydrological data and information. The framework is powered by knowledge discovery, information fusion and visualization tools, that:

  • assist hydrologists developing comprehensive models and metrics for the analysis of the water cycle;
  • supports decision makers in adaptive management determinations;
  • increases confidence in water data for adaptive managers, policymakers, and water users; and
  • helps policy makers study the social and legal impact on water users.

The project addresses several research aspects of collaborative systems, including knowledge discovery and information fusion applied in a digital government domain. Part of the project also includes collaboration with Hohai University (Nanjing, China) to develop cross-national research relevant to water management issues.

Project Support National Science Foundation, Digital Government Program
Project Website
Report
Current Status Underway
Topic Crop Water Use and Water Use Efficiency
Project's Primary Contact Information
Name Allen, Craig (advisor)
Unit Nebraska Cooperative Fish and Wildlife Research Unit
Email callen3@unl.edu
Phone 402-472-0229
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=647
Project Information
Title Agricultural Landuse Change Impacts on Bioenergy Production, Avifauna and Water Use in Nebraska's Rainwater Basin
Other(s) Daniel Uden, School of Natural Resources, daniel.uden@huskers.unl.edu; Rob Mitchell, USDA-ARS; Tim McCoy, Nebraska Game and Parks Wildlife Division; Qinfeng Guan, School of Natural Resources, qguan2@unl.edu 
Description

This study addressed how the conversion of marginally productive agricultural lands in the Rainwater Basin region of south-central Nebraska, U.S.A. to bioenergy switchgrass (Panicum virgatum) might impact ethanol production, grassland bird populations and agricultural groundwater withdrawals. This study also used multi-model inference to develop predictive models explaining annual variation in springtime wetland occurrence and flooded area in the Rainwater Basin.

Results suggest that cellulosic ethanol production from switchgrass and residual maize (Zea mays) stover within existing starch-based ethanol plant service areas is feasible at current feedstock yields, removal rates and bioconversion efficiencies. Throughout the Rainwater Basin, the replacement of marginally productive rowcrop fields with switchgrass could increase ethanol production, conserve groundwater and benefit grassland birds under novel future climatic conditions. However, converting Conservation Reserve Program (CRP) grasslands to switchgrass could be detrimental to grassland bird populations. Predictive wetland inundation models suggest that surrounding agricultural landuse, wetland hydric footprint shape complexity, and autumn and winter precipitation and temperature are strong drivers of springtime wetland occurrence and flooded area in the Rainwater Basin.

Under a modest change scenario, 350 wells on rowcrop fields converted to switchgrass could cease groundwater pumping, conserving 52,064 acre-feet of water annually (2.6% of regional pumping capacity).

Under a extreme change scenario, 737 wells on rowcrop fields converted to switchgrass could cease groundwater pumping, conserving 112,827 acre-feet of water annually (5.6% of regional pumping capacity).

In areas at higher risk for additional irrigation limitations, agriculture groundwater use under the modest change and extreme change scenarios could decrease by 9.6% and 19.1%, respectively.

Click here to read a journal article about this research

Project Support U.S. Geological Survey, Great Plains Landscape Conservation Cooperative
Project Website http://snr.unl.edu/aboutus/who/people/graduatestudent-member.asp?pid=1373#tab1
Report Uden Landuse Change.pdf
Current Status Completed
Topic Extension
Project's Primary Contact Information
Name Skipton, Sharon
Unit Southeast Research and Extension Center
Email sskipton1@unl.edu
Phone 402-472-3662
Web Page http://www.southeast.unl.edu/staffdir/Skipton_Sharon
Project Information
Title Southeast Research and Extension Center
Other(s) Gary Zoubek, York County Extension, gzoubek@unl.edu 
Description Each day University of Nebraska Extension makes a difference in the lives of adults and youth. The faculty and staff in the Southeast Research and Extension Center and the 28 County Offices work to bring relevant researched based information to people in communities, towns and urban centers. Our efforts rely increasingly on partnerships with government agencies, business, industry, schools and community organizations. Working together with our partners Extension strives to strengthen the social, economic and environmental base of Nebraska's communities. Our programs must be ever-changing as Extension listens and responds to issues as they evolve. The Southeast Research and Extension District is unique because it serves both urban and rural communities Nebraska. The faculty and staff are committed to bringing the resources of the University and its research based information to the individuals and communities of Southeast Nebraska.
Project Support Varies according to program and project - for more information see http://www.southeast.unl.edu/
Project Website http://www.southeast.unl.edu/
Report
Current Status Continuous
Topic Hydrology
Project's Primary Contact Information
Name Chen, Xun-Hong
Unit School of Natural Resources
Email xchen2@unl.edu
Phone 402-472-0772
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=19
Project Information
Title Investigation of Stream-Aquifer Hydrologic Relationship for Clear Creek in Polk and Butler Counties
Other(s) Weihong Dong, Jilin University; Zhaowei Wang, School of Natural Resources; Gengxin Ou, School of Natural Resources; Can Liu, School of Natural Resources, can.liu1989@huskers.unl.edu 
Description

Vertical hydraulic conductivities (Kv) of both streambed and point bars can influence water and solute exchange between streams and surrounding groundwater systems. The sediments in point bars are relatively young compared to the older sediments in the adjacent aquifers but slightly older compared to submerged streambeds. Thus, the permeability in point bar sediments can be different not only from regional aquifer but also from modern streambed. However, there is a lack of detailed studies that document spatial variability of vertical hydraulic conductivity in point bars of meandering streams. In this study, the authors proposed an in situ permeameter test method to measure vertical hydraulic conductivity of the two point bars in Clear Creek, Nebraska, USA. We compared the Kv values in streambed and adjacent point bars through 45 test locations in the two point bars and 51 test locations in the streambed.

The Kv values in the point bars were lower than those in the streambed. Kruskal–Wallis test confirmed that the Kv values from the point bars and from the channel came from two statistically different populations. Within a point bar, the Kv values were higher along the point bar edges than those from inner point bars. Grain size analysis indicated that slightly more silt and clay particles existed in sediments from inner point bars, compared to that from streambed and from locations near the point bar edges. While point bars are the deposits of the adjacent channel, the comparison of two groups of Kv values suggests that post-depositional processes had an effect on the evolution of Kv from channel to point bars in fluvial deposits.

We believed that the transport of fine particles and the gas ebullition in this gaining stream had significant effects on the distribution of Kv values in a streambed-point bar system. With the ageing of deposition in a floodplain, the permeability of point bar sediments can likely decrease due to reduced effects of the upward flow and gas ebullition.

Project Support Upper Big Blue Natural Resources District, Chinese Ministry of Education, National Natural Science Foundation of China
Project Website
Report Chen_Hydraulic_Conductivity.pdf
Current Status Completed
Pic 1 Project Image
Pic Caption 1 Map showing the study site in Clear Creek, Nebraska 
Pic 2 Project Image 2
Pic Caption 2 Schematic for the in situ permeameter test in the point bars 
Topic Hydrology
Project's Primary Contact Information
Name Chen, Xun-Hong
Unit School of Natural Resources
Email xchen2@unl.edu
Phone 402-472-0772
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=19
Project Information
Title Hydrologic Connections in the Big and Little Blue River Basins
Other(s) Cheng Cheng, School of Natural Resources, ccheng2@unl.edu 
Description Over extraction of groundwater near a stream can lower stream stage and induce streamflow depletion when the stream and aquifer are hydrologically connected. The Little Blue River Basin is an area of intensive groundwater development for irrigation, and the streamflow depletion in this basin was determined by an analog model (Emery, 1966). However, the post audit of the model (Alley and Emery, 1986) suggested that the decline of water-levels was overestimated and streamflow depletion was underestimated. Therefore, it is necessary to re-evaluate stream-aquifer interactions in the basin. In this study, an area is chosen for this analysis from the basin and three main streams -- the Little Blue River, Big Sandy Creek, and Spring Creek are included. Channel sediments and structures play an important role in determining stream-aquifer interactions. Firstly, field and laboratory methods including geoprobe logging and permeameter tests are utilized to investigate the channel deposits in the three main streams in the Little Blue River Basin. Results show that channels have low hydraulic-permeable layers which reduce their hydraulic connections to the adjacent aquifers. Secondly, a groundwater flow model is constructed to identify the hydraulic properties of the aquifer and evaluate streamflow depletion under groundwater withdrawals in the study area. Modeling results indicate that streamflow depletion is very low and aquifer storage loss is the main source of groundwater pumpage.
Project Support Upper Big Blue Natural Resources Distrect, Lower Big Blue Natural Resources District, Little Blue Natural Resources District
Project Website
Report
Current Status Completed
Topic Hydrology
Project's Primary Contact Information
Name Chen, Xun-Hong
Unit School of Natural Resources
Email xchen2@unl.edu
Phone 402-472-0772
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=19
Project Information
Title Hydrologic Connections in the Central Platte River Basin
Other(s) Mark E. Burbach, Conservation and Survey Division, mburbach1@unl.edu; Cheng Cheng, School of Natural Resources, ccheng2@unl.edu 
Description

The hydrologic properties of channel sediments have an important role in controlling hydrologic process in streams. This study focused on the water exchange between a stream and an aquifer induced by groundwater withdrawal, with the purpose of investigating the interbedded feature of channel sediments and to evaluate its effects on the calculation of streamflow depletion. Field work was conducted at nine study sites between Kearney and Columbus during the summers of 2005 and 2006. Direct-push techniques were used to produce electrical conductivity logs and to collect sediment cores. Permeameter tests were conducted on the sediment cores. Stream-aquifer simulation models were used to evaluate streamflow depletion for various types of channel sediments.

Sediment core samples were categorized into four groups:

  • sand and gravel,
  • sand and gravel with interbedded silt and clay layers,
  • fine sand with silt or clay layers, and
  • silt and clay with some sand and gravel.

In general coarse sediments occur in the western part of the study area, and the amount of fine sand, silt and clay increases eastward along the river. However, the sediments in the top two meters are about the same for all the sites, consisting mainly of sand and gravel.

Project Support Central Platte Natural Resources District, Upper Big Blue Natural Resources District, U.S. Geological Survey (through the University of Nebraska-Lincoln Water Center), U.S. Environmental Protection Agency
Project Website
Report Chen Hydrologic Connections.pdf
Current Status Published in Journal of Hydrology 2008 352:250-266
Topic Water Chemistry
Project's Primary Contact Information
Name Dussault, Pat
Unit Chemistry
Email pdussault1@unl.edu
Phone 402-472-6951
Web Page http://chem.unl.edu/faculty/eachfaculty/dussault.shtml
Project Information
Title Directed Reactions of Carbonyl Oxides: A New Approach to Ozonolysis
Description

This project will explore the ability of chemical additives to direct the formation of products in alkene ozonolysis, one of the most important oxidative transformations in organic chemistry. While the central role of carbonyl oxides in alkene ozonolysis has been known for more than a half century, the scope of reagents able to react with these short-lived intermediates remains extremely limited. The hypothesis central to the research is that the presence of specific additives will control the reactivity of the intermediate carbonyl oxides to favor formation of particular products, some of which are completely unavailable by traditional methodology. The project will focus on three areas: First, the generation and fragmentation of carbonyl oxide-derived zwitterions will be investigated as a new approach for \"reductive\" ozonolysis, a process which directly produces carbonyl products without the need for a separate reductive step. Second, ozonolysis in the presence of Lewis acids will be explored as a means for enhancing nucleophilic trapping of carbonyl oxides. Finally, generation and fragmentation of heteroozonides will be explored for the direct conversion of alkenes to carboxyl groups.

Click here to read a journal article about Ozonolysis

Click here to read another journal article about this research

Project Support National Science Foundation
Project Website http://chem.unl.edu/faculty/eachfaculty/dussault.shtml
Report
Current Status Underway
Topic Water Quality
Project's Primary Contact Information
Name Dvorak, Bruce
Unit Civil Engineering
Email bdvorak1@unl.edu
Phone 402-472-3431
Web Page http://www.engineering.unl.edu/civil/faculty/BruceDvorak.shtml
Project Information
Title Maximizing Sorbent Life: Comparison of Columns in Parallel, Lead-Lag Series, and with Bypass Blending
Description

Various adsorption column configurations can be used to increase fractional utilization and decrease adsorbent usage rate. This study compared the adsorbent usage rate of different column configurations. Mathematical models simulated chromatographic breakthrough front shapes and determined adsorbent usage rates. A configuration selection diagram based on percent mass-transfer zone (MTZ) target C/Co (effluent concentration/influent concentration) was created to compare the adsorbent usage rate of configurations for single component systems. The target C/Co determined the column configuration with the lowest adsorbent usage rate when the MTZ was a large percentage of the column (>60%), while all column configurations generally performed similarly at short percent MTZs (less than 30%). Bypass blending was found to be most effective with a lead-lag configuration and the maximum amount of bypass. A sensitivity analysis determined that competitive adsorption can significantly change the configuration selection diagram and generally makes lead-lag more competitive compared with parallel column configurations.

Read more about this research in the Journal of Water Environment Research

Project Support n/a
Project Website
Report
Current Status Completed
Topic Water Quality
Project's Primary Contact Information
Name Riens, John
Unit Wisconsin Ecological Services Field Office, U.S. Fish & Wildlife Service
Email John_Riens@fws.gov
Phone 541-885-2503
Web Page http://www.fws.gov/
Project Information
Title Macroinvertebrate Response to Buffer Zone Quality in the Rainwater Basin Wetlands of Nebraska
Other(s) W. Wyatt Hoback, Biology UNK, hobackww@unk.edu; Matt Schwarz, U.S. Fish & Wildlife Service 
Description

The Rainwater Basin is one of the most endangered wetland ecosystems in North America. This ecosystem is critical to many species including migratory waterfowl. Land use and runnoff from agriculture and cattle confinement operations are likely to be reducing the basin's health and diversity, however little information exists concerning macroinvertebrates. Twenty-two locations were assessed for water quality parameters, vegetation composition, and macroinvertebrates identified to genus. Samples were collected biweekly starting in April through July for three years. Macroinvertebrate diversity was impacted in areas with little buffer although the effects were not pronounced. Institution of a more effective vegetative buffers strip may reverse this trend to improve ecosystem quality and provide for invertebrate resources for migratory birds.

Click here to see a poster about this research

Project Support n/a
Project Website
Report
Current Status Completed
Topic Water Quality
Project's Primary Contact Information
Name Tang, Zhenghong
Unit Architecture
Email ztang2@unl.edu
Phone 402-472-9281
Web Page http://architecture.unl.edu/people/bios/tang_zhenghong.shtml
Project Information
Title Assessment of Sedimentation and Water Quality Conditions in the Rainwater Basin's Playa Wetlands
Other(s) Mark Kuzila, School of Natural Resources, mkuzila1@unl.edu; Xu Li, Department of Civil Engineering, xuli@unl.edu; Amy Burgin, School of Natural Resources, aburgin2@unl.edu 
Description

The overall goal of this project is to prioritize watershed restoration/acquisition programs in the Rainwater Basin (RWB) by examining playa wetlands’ sedimentation and water quality conditions using the Revised Universal Soil Loss Equation 2 (RUSLE2) and the fly ash technology.

Three specific tasks are included in this project:

  1. Calculate and map the sedimentation rates and the age of deposition for all playa wetlands in RWB
  2. Consolidate existing water quality data of the RWB playa wetlands and evaluate the key factors influencing playa wetland water quality
  3. Assess the effects of sedimentation control practices and prioritize future watershed restoration/acquisition programs

The final products of this project include:

  1. An atlas of wetland sedimentation maps and a risk report highlighting the areas in watersheds with the highest sedimentation rates
  2. A geodatabase and an evaluation report on the water quality conditions of the playa wetlands in the RWB
  3. A written assessment report for sedimentation control practices and a watershed index to prioritize future conservation/acquisition programs
Project Support U.S. Environmental Protection Agency
Project Website http://www.unl.edu/playawetlands/
Report
Current Status Underway
Topic Wetlands
Project's Primary Contact Information
Name Tang, Zhenghong
Unit Architecture
Email ztang2@unl.edu
Phone 402-472-9281
Web Page http://architecture.unl.edu/people/bios/tang_zhenghong.shtml
Project Information
Title Developing LiDAR-Derived Wetland Maps To Assess Conservation Design Practices For Playa Wetlands In Rainwater Basin
Other(s) Ed Harvey, School of Natural Resources, feharvey1@unl.edu; Xu Li, Department of Civil Engineering 
Description The overall goal of this project is to provide wetland managers with topographically-correct 3-D wetland maps to prioritize wetland conservation efforts and assess wetland conservation design practices. This project addresses three specific tasks for the playa wetlands: 1) Establish accurate, topographically-correct, 3-D wetland maps to relate weather conditions and wetland functions; 2) Develop a measurable Restorable Wetland Index to prioritize playa wetland and drainages conservation; 3) Assess wetland conservation design practices for watershed-based wetland conservation. This research will use high-resolution Light Detections And Ranging (LiDAR) data to create next-generation wetland maps for playa wetlands. The research provides the missing link in conservation design as these data will provide accurate elevation measures to delineate watershed extent and determine the impact of individual hydrologic modifications. This project will be one of the first to integrate LiDAR data and a hydrologic modifications datasets to find the relations of current weather conditions and wetland functions. This project provides reliable, accurate wetland spatial parameters to prioritize playa wetland conservation and assess the effectiveness of existing wetland conservation design practices. The wetland conservation design tools and protocols will be examined in two pilot counties in Nebraska. The intellectual merit of the research is based on advancing knowledge linkage of wetland mapping technologies and wetland function modifications, and showing how to adapt wetland conservation designs. The outputs from this project provide practical protocols for state/regional/local wetland managers and thus ensure "no net loss" in quality and quantity of wetlands.
Project Support US EPA
Project Website
Report
Current Status Completed