NU Water-Related Research in District 23

The list below shows water-related research being conducted within your district or that affects your district. They are sorted by water topic, then by primary contact's last name.

Displaying 29 records found for District 23


Topic Crop Nutrient Use
Project's Primary Contact Information
Name Schepers, Jim
Unit Agronomy and Horticulture
Email Jim.Schepers@ARS.USDA.GOV
Phone 402-472-1513
Web Page http://www.agronomy.unl.edu/newfacultystaff/directory/schepers.html
Project Information
Title Managing Nitrogen Fertilizer Applications to Protect Groundwater
Description USDA-ARS scientists have research projects near Shelton, near Giltner, and about seven miles north of Central City which deal with protecting groundwater by carefully managing nitrogen fertilizer applications to corn and wheat. One cropping system involves seed corn production, which is assumed to be environmentally unfriendly. Our strategy is to plant wheat as a scavenger crop after the seed corn is harvested. In early June, soybeans are inter-seeded into the wheat. Both wheat and soybean function as scavenger crops and essentially eliminate the potential for nitrate leaching. A component of this management strategy is to use active (no sunlight required) crop canopy sensors to monitor plant chlorophyll (greenness) and biomass (vigor) while driving through the field to determine if more nitrogen is required by wheat or corn and automatically applying additional fertilizer while at that spot in the field. These technologies allow producers to use the crop as a bio-sensor of nitrogen needs and optimize nitrogen supplied by other sources (soil organic matter, manure, irrigation water).
Project Support U.S. Department of Agriculture - Agricultural Research Service
Project Website http://www.nue.okstate.edu/
Report
Current Status n/a
Topic Crop Nutrient Use
Project's Primary Contact Information
Name Wortmann, Charles
Unit Agronomy and Horticulture
Email cwortmann2@unl.edu
Phone 402-472-2909
Web Page http://agronomy.unl.edu/wortmann
Project Information
Title Nitrogen Use Efficiency of Irrigated Corn for Three Cropping Systems in Nebraska
Other(s) Charles Shapiro, Agronomy & Horticulture, cshapiro@unl.edu; Richard Ferguson, Agronomy & Horticulture, rferguson1@unl.edu; Gary Hergert, Panhandle Research & Extension Center, ghergert1@unl.edu 
Description

Overview Nitrogen fertilizer will continue to be indispensible for meeting global food, feed, and fiber needs. Voroneyand Derry (2008) estimated that 340 million Mg yr-1 N is fixed by natural means, including lightning and biological N fixation, and 105 million Mg yr-1 is fixed by human activities, including burning of fossil fuels and N fertilizer production, with N fixation by human activities expected to continue to increase. Townsend and Howarth (2010) estimated the amount of N fixed by human activities to be about 180 million Mg yr-1, with most used as mineral fertilizer. Fertilizer N production has important environmental implications with an average of ~2.55 kg CO2 emitted per kg fertilizer N fixed and transported (Liska et al., 2009). Th e amount of N applied is associated with emission of N2O (IPCC–OECD, 1997) and N accumulation in sensitive aquatic, marine, and terrestrial ecosystems (Groffman, 2008; Malakoff , 1998). Th e challenge is to produce more grain to meet growing global needs with high NUE.

Conclusions Across diverse production environments, high corn yields can be achieved with efficient use of soil and applied N and without high risk of NO3 -N leaching to groundwater. With excellent farm management, recovery of applied fertilizer-N in high-yielding corn fields of Nebraska was well above 60 to 70% at the economically optimal nitrogen rate (EONR), resulting in low residual soil nitrate nitrogen (RSN) levels. Agronomic efficiency and crop partial factor productivity (PFP), the Nitrogen use efficiency (NUE) components most closely related to profitability of production, can also be high at EONR. Less preplant and more in-season N application may be especially important for drybean (CD) which had low recovery efficiency (RE) and much postharvest RSN compared with corn (CC) and soybean (CS). The levels of NUE achieved in our study for CC and CS far exceed current national or regional means, demonstrating the potential for high NUE with high yield corn production. Further NUE efficiency may be gained through more accurate in-season N application such as with use of the presidedress NO3 test (Andraski and Bundy, 2002) and spatial variation in N rate in response to variation in crop need, such as through use of reflectance sensors (Scharf and Lory, 2009; Barker and Sawyer, 2010; Roberts et al., 2010).

Project Support Nebraska State Legislature, Nebraska Agricultural Business Association
Project Website
Report Wortmann_NUE.pdf
Current Status Completed
Topic Crop Water Use
Project's Primary Contact Information
Name Cassman, Ken
Unit Agronomy and Horticulture
Email kcassman1@unl.edu
Phone 402-472-5554
Web Page http://agronomy.unl.edu/cassman
Project Information
Title Real-time Decision Support System for Deficit Irrigation - Hybrid-Maize
Other(s)  
Description

Hybrid-Maize is a computer program that simulates the growth of a corn crop under non-limiting or water-limited (rainfed or irrigated) conditions based on daily weather data. Specifically, it allows the user to:

  • assess the overall site yield potential and its variability based on historical weather data
  • evaluate changes in attainable yield using different combinations of planting date, hybrid maturity, and plant density
  • explore options for optimal irrigation management
  • conduct in-season simulations to evaluate actual growth up to the current date based on real-time weather data, and to forecast final yield scenarios based on historical weather data for the remainder of the growing season

Hybrid-Maize does NOT allow assessment of different options for nutrient management nor does it account for yield losses due to weeds, insects, diseases, lodging, and other stresses. Hybrid-Maize has been evaluated primarily in rainfed and irrigated maize systems of the U.S. Corn Belt. Caution should be exercised when applying this model to other environments as this may require changes in some of the default model parameters.

This project will develop a similar tool for irrigation scheduling for Nebraska soybean producers, and a real-time decision support system for deficit irrigation on corn, both based upon the Hybrid-Maize model. These tools will assist producers who have limited irrigation water supplies to optimize irrigation scheduling in real time for maximum yields, in particular during water-short years.

Project Support Nebraska Natural Resources Conservation Service, Nebraska Soybean Board
Project Website http://hybridmaize.unl.edu/
Report
Current Status Continuing - Software Available
Topic Crop Water Use
Project's Primary Contact Information
Name Irmak, Suat
Unit Biological Systems Engineering
Email sirmak2@unl.edu
Phone 402-472-4865
Web Page http://bse.unl.edu/sirmak2
Project Information
Title Nebraska Agricultural Water Management Demonstration Network
Other(s) Gary Zoubek, York County Extension, gzoubek@unl.edu 
Description

The Nebraska Agricultural Water Management Demonstration Network (NAWMDN) encourages the adoption of newer technologies that will enable farmers to use water and energy resources associated with irrigated crop production efficiently. NAWMDN launched in 2005 and started with 20 growers from south central Nebraska who joined the Network as collaborators. In 2008 an online tool named ETgage was added to enable participation by growers throughout Nebraska.

The NAWMDN ETgage project is one part of a system for testing cutting-edge technologies and creating a network with growers, UNL Extension, NRDs, NRCS, and crop consultants, and other interested partners, that will enable the adoption of water and energy conservation practices. The simplicity of the use and interpretation of the ETgage data, as well as its economic feasibility, makes it easy for farmers to monitor crop water use for effective irrigation management. In this project ETgages are used to estimate crop water use, and Watermark sensors are used to measure soil moisture to determine irrigation timing and amount. Each year, NAWMDN team members organize educational meetings during the growing season and over the winter to implement the project, teach participants how to use the ETgage and Watermark sensors for irrigation management, review the results, set goals, and obtain grower feedback. This project has been reported at local, regional, and national meetings.

In 2005, there were 18 demonstration sites. Some of the ETgage and Watermark sensors were read by growers and some were read weekly by Network core members. In 2006, the second year of the project, there were more than 50 demonstration sites. In 2007 more than 125 cooperators in nine NRDs and 22 counties were involved. In the fall of 2007, 89 producers involved in the NAWMDN were surveyed; of those 56% responding, the estimated corn water savings varied from 0-7.5" with an average savings of 2.6," while soybeans water savings varied from 0-4.8" with an average of 2.1." Using 2007 diesel prices, this resulted in total energy savings of $2,808,000 and $2,269,800 for corn or soybeans over 117,000 acres.

In 2008 over 300 active participants from 25 counties in 9 of Nebraska's 23 NRDs. An interactive web site was also created to inform growers and other clients about the network and to educate producers and industry professionals about using these two tools along with crop stage of growth information to make irrigation management decisions. This interactive web site has engaged the cooperating producers and enhanced learning. The site consists of a map of Nebraska's 93 counties on which producers can select specific counties to find a Google gps map with ETgauge locations marked. Producers can click on specific sites to see the weekly reference evapoptranspiration (ET) reported by producers. The site also includes information about the NAWMDN and how to use the various tools.

For detailed information, see Nebraska Agricultural Water Management Demonstration Network: Integrating Research and Extension/Outreach.

Project Support Partners include personnel from 19 extension offices, the Little Blue NRD, the Upper Big Blue NRD, Nebraska Association of Resources Districts, Nebraska Natural Resources Conservation Service, South Central Agricultural Laboratory, and the Central Nebraska Public Power and Irrigation District.
Project Website http://water.unl.edu/cropswater/nawmdn
Report
Current Status Continuing
Topic Crop Water Use
Project's Primary Contact Information
Name Irmak, Suat
Unit Biological Systems Engineering
Email sirmak2@unl.edu
Phone 402-472-4865
Web Page http://bse.unl.edu/sirmak2
Project Information
Title A Decision Support Tool to Increase Energy and Crop Water Use Efficiency for Corn and Soybean Production
Description

Energy costs coupled with limitations in water availability are threatening the sustainability of irrigation in the state. Energy costs for irrigation rose almost 100 percent for typical Nebraska irrigators from the spring of 2003 to the summer of 2006 and continue to rise sharply. The rising cost of fuel and the limited availability of water make producing maximum crop yield with minimal input imperative.

Nebraska growers need scientifically based and practical management strategies that can aid them in their decision-making process to enhance crop water-use efficiency and reduce energy use to achieve maximum profitability. Growers are looking for answers on how to make a maximum use of limited irrigation water and how to manage irrigation water to reduce pumping cost.

Crop simulation models with the capability of "real-time" assessment of crop and soil water status and yield prediction based on historical climate data represent a powerful new tool to help improve irrigation decisions and increase water-use efficiency especially for situations where the amount of available water supply is less than the full requirement for maximum crop yield. This project validates and demonstrates a decision-support tool for a real-time irrigation scheduling period, and releases the new tool as a software program for use by crop producers, crop consultants, and industry professionals. This tool will be used to assess energy requirement for different irrigation regimes to aid growers and state and federal agencies to make better-informed management decisions.

Project Support Upper Big Blue Natural Resources District, Gard Fund
Project Website
Report
Current Status Underway
Topic Crop Water Use
Project's Primary Contact Information
Name Kranz, Bill
Unit Northeast Research and Extension Center
Email wkranz1@unl.edu
Phone 402-475-3857
Web Page http://bse.unl.edu/web/bse/wkranz1
Project Information
Title Nebraska Agricultural Water Management Network - Northeast Activities
Other(s) Suat Irmak, Biological Systems Engineering, sirmak2@unl.edu; Ralph Kulm, rkulm1@unl.edu 
Description

This project is an extension of the Nebraska Agricultural Water Management Network and demonstrates the use of ETgages as a means of estimating potential crop water use in a local area. Because the closest weather station may be more than 20 miles away, weather data becomes less accurate; farmers within a 8-10 mile square area of a local ETgage could use the readings to get more accurate estimates of crop water use. Soil water sensors are used to ensure that irrigation amounts are appropriate for the field site. Crop water use estimates are supplied to local radio stations for broadcast on a daily basis.

Field sites near O'Neill, Pender, Schuyler and West Point include a demonstration and field testing of the ETgage and soil water sensors. Field data is being collected to determine how well a modified atmometer and watermark soil water sensors work in the sandy soils in this area. Some natural resources districts are providing cost share on this equipment. Eventually this network could be similar to the NeRAIN internet delivery program.

Project Support Nebraska Natural Resources Conservation Service
Project Website http://water.unl.edu/NAWMN
Report
Current Status Continuing
Topic Crop Water Use
Project's Primary Contact Information
Name Martin, Derrel
Unit Biological Systems Engineering
Email dmartin1@unl.edu
Phone 402-472-1586
Web Page http://bse.unl.edu/dmartin2
Project Information
Title Enhancing Irrigation Management Tools and Developing a Decision System for Managing Limited Irrigation Supplies - Enhancing The Water Optimizer
Other(s) Chris Thompson, Agricultural Economics, cthompson2@unl.edu; Paul Burgener, Panhandle Research and Extension Center, pburgener2@unl.edu; Ray Supalla, Agricultural Economics, rsupalla1@unl.edu; Gary Hergert, Panhandle Research and Extension Center, ghergert1@unl.edu 
Description

The Water Optimizer is a computer model developed in response to several years of drought across the state and to farmers facing water restrictions. The model can be used by producers to evaluate management options when water is limiting due to drought or regulations; it can also be used by water planners or policy makers who wish to estimate the farm-level economic consequences of retiring acres or regulating the water supply. Released by UNL in 2005, the model is available for all counties in Nebraska to evaluate single fields for several crop options. Irrigated crops include: corn, soybeans, sorghum, wheat, alfalfa, edible beans and sunflowers. Dryland crops include: corn, soybeans, sorghum, sunflowers, alfalfa and wheat in continuous, summer fallow and eco-fallow rotations. Producers put information into a Microsoft Excel spreadsheet, including soil type and irrigation system options. Irrigation options include center pivot or gravity irrigation systems, well or canal delivery, and systems powered by electricity, diesel or natural gas. After entering this basic information, producers enter their production costs, irrigation costs, crop prices, crop type and available water. After these parameters have been set, the program calculates what crops will be most profitable with the given costs and available water. This gives the producer a "whole farm view" in considering how to manage available water supplies.

While the Water Optimizer is useful, it is limited in that it considers economic choices and consequences one field (well) and one year at a time. Three different departments (Agronomy-Horticulture, Agricultural Economics and Biological Systems Engineering) will combine their expertise to develop information to enhance Water Optimizer by: 1) improving the tool's function for crops grown in the semiarid High Plains, including canola, camelina, chickpeas, dry beans and sunflowers; 2) expanding the tool's geographic coverage area to additional counties in Nebraska including irrigated areas in Colorado and Kansas; 3) developing the capability to evaluate risk-management alternatives on a whole-farm basis as well as field by field; and 4) developing the capability to determine the best strategies for managing multi-year water allocations. The benefits of this project will be to maintain profitability and sustain farming enterprises with a limited irrigation supply. The goal is to conduct educational programming in conjunction with the project to encourage other producers to implement practices and concepts demonstrated in this project. An additional outcome will be transferring this information to other areas of declining ground water or surface water.

The Water Optimizer tool was developed to assist in addressing water shortages created by drought and interstate water rights litigation. The current model released November 2010, supports all 93 Nebraska counties.

Project Support U.S. Department of Agriculture Risk Management Agency
Project Website http://agecon.unl.edu/wateroptimizer
Report
Current Status Underway
Topic Crop Water Use and Water Use Efficiency
Project's Primary Contact Information
Name Allen, Craig (advisor)
Unit Nebraska Cooperative Fish and Wildlife Research Unit
Email callen3@unl.edu
Phone 402-472-0229
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=647
Project Information
Title Agricultural Landuse Change Impacts on Bioenergy Production, Avifauna and Water Use in Nebraska's Rainwater Basin
Other(s) Daniel Uden, School of Natural Resources, daniel.uden@huskers.unl.edu; Rob Mitchell, USDA-ARS; Tim McCoy, Nebraska Game and Parks Wildlife Division; Qinfeng Guan, School of Natural Resources, qguan2@unl.edu 
Description

This study addressed how the conversion of marginally productive agricultural lands in the Rainwater Basin region of south-central Nebraska, U.S.A. to bioenergy switchgrass (Panicum virgatum) might impact ethanol production, grassland bird populations and agricultural groundwater withdrawals. This study also used multi-model inference to develop predictive models explaining annual variation in springtime wetland occurrence and flooded area in the Rainwater Basin.

Results suggest that cellulosic ethanol production from switchgrass and residual maize (Zea mays) stover within existing starch-based ethanol plant service areas is feasible at current feedstock yields, removal rates and bioconversion efficiencies. Throughout the Rainwater Basin, the replacement of marginally productive rowcrop fields with switchgrass could increase ethanol production, conserve groundwater and benefit grassland birds under novel future climatic conditions. However, converting Conservation Reserve Program (CRP) grasslands to switchgrass could be detrimental to grassland bird populations. Predictive wetland inundation models suggest that surrounding agricultural landuse, wetland hydric footprint shape complexity, and autumn and winter precipitation and temperature are strong drivers of springtime wetland occurrence and flooded area in the Rainwater Basin.

Under a modest change scenario, 350 wells on rowcrop fields converted to switchgrass could cease groundwater pumping, conserving 52,064 acre-feet of water annually (2.6% of regional pumping capacity).

Under a extreme change scenario, 737 wells on rowcrop fields converted to switchgrass could cease groundwater pumping, conserving 112,827 acre-feet of water annually (5.6% of regional pumping capacity).

In areas at higher risk for additional irrigation limitations, agriculture groundwater use under the modest change and extreme change scenarios could decrease by 9.6% and 19.1%, respectively.

Click here to read a journal article about this research

Project Support U.S. Geological Survey, Great Plains Landscape Conservation Cooperative
Project Website http://snr.unl.edu/aboutus/who/people/graduatestudent-member.asp?pid=1373#tab1
Report Uden Landuse Change.pdf
Current Status Completed
Topic Crop Water Use and Water Use Efficiency
Project's Primary Contact Information
Name Irmak, Suat
Unit Biological Systems Engineering
Email sirmak2@unl.edu
Phone 402-472-4865
Web Page http://bse.unl.edu/sirmak2
Project Information
Title Surface energy balance model of transpiration from variable canopy cover and evaporation from residue-covered or bare soil systems
Description

A surface energy balance model (SEB) was extended by Lagos et al. Irrig Sci 28:51–64 (2009) to estimate evapotranspiration (ET) from variable canopy cover and evaporation from residue-covered or bare soil systems. The model estimates latent, sensible, and soil heat ?uxes and provides a method to partition evapotranspiration into soil/residue evaporation and plant transpiration. The objective of this work was to perform a sensitivity analysis of model parameters and evaluate the performance of the proposed model to estimate ET during the growing and non-growing season of maize (Zea Mays L.) and soybeans (Glycine max) in eastern Nebraska. Results were compared with measured data from three eddy covariance systems under irrigated and rain-fed conditions. Sensitivity analysis of model parameters showed that simulated ET was most sensitive to changes in surface canopy resistance, soil surface resistance, and residue surface resistance. Comparison between hourly estimated ET and measurements made in soybean and maize ?elds provided support for the validity of the surface energy balance model.

Three sites located at the University of Nebraska Agricultural Research and Development Center (ARDC) near Mead, NE, were used for this evaluation. Field area ranges from 49 to 65 ha, providing suf?cient fetch of uniform cover required for adequately measuring mass and energy ?uxes using eddy covariance systems (Verma et al. 2005). Site 1 is an irrigated (center pivot) continuous maize system of 48.7 ha; site 2 is an irrigated (center pivot) maize soybean rotation system of 52.4 ha; and site 3 is a rain-fed maize soybean rotation system of 65.4 ha.

More about this research here in the journal Irrigation Science.

Project Support US EPA, University of Nebraska Program of Excellence, Fondo de Fomento al Desarrollo Cientifico y Tecnologico (Chile)
Project Website
Report
Current Status Completed
Topic Drought
Project's Primary Contact Information
Name Hanson, Paul
Unit School of Natural Resources
Email phanson2@unl.edu
Phone 402-472-7762
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=758
Project Information
Title Pre-Historic Drought Records from the Eastern Platte River Valley
Other(s) R. Matt Joeckel, School of Natural Resources, rjoeckel3@unl.edu; Aaron Young, School of Natural Resources, ayoung3@unl.edu 
Description Recent studies have related large-scale dune activity in the Nebraska Sandhills and elsewhere on the western Great Plains to prehistoric megadroughts. At the eastern margin of the Great Plains, however, little or no effort has been expended toward identifying the impacts and severity of these climatic events. The eastern margin of the Great Plains should be of particular interest in paleclimate studies because it represents an important biogeographic boundary that may have shifted over time. In dunes around the present confluence of the Loup and Platte Rivers near Duncan, Nebraska, optical dating contrains, for the first time, the chronology of dune activity in the central-eastern margin of the Great Plains. A total of 17 optical age estimates taken from dune sediments clearly indicate two significant periods of dune activation at 5,100 to 3,500 years ago and 850-500 years ago. These reconstructed time intervals overlap both periods of large-scale dune activity in the Nebraska Sandhills and ancient droughts identified from other paleoclimate proxy records on the western Great Plains. The agreement between results from the eastern margin of the Great Plains and data from farther west indicate that megadroughts were truly regional in their effect. In order to further test a hypothesis of geographically-widespread megadrought effects, future work will date other dune deposits in eastern Nebraska from sites along the Loup and Elkhorn Rivers, as well as dunes in east-central Kansas and western Iowa.
Project Support United States Geological Survey Statemap Program
Project Website
Report Hanson Eastern Platte Valley.pdf
Current Status Published in Geomorphology 103 (2009) 555-561
Topic Extension
Project's Primary Contact Information
Name Skipton, Sharon
Unit Southeast Research and Extension Center
Email sskipton1@unl.edu
Phone 402-472-3662
Web Page http://www.southeast.unl.edu/staffdir/Skipton_Sharon
Project Information
Title Southeast Research and Extension Center
Other(s) Gary Zoubek, York County Extension, gzoubek@unl.edu 
Description Each day University of Nebraska Extension makes a difference in the lives of adults and youth. The faculty and staff in the Southeast Research and Extension Center and the 28 County Offices work to bring relevant researched based information to people in communities, towns and urban centers. Our efforts rely increasingly on partnerships with government agencies, business, industry, schools and community organizations. Working together with our partners Extension strives to strengthen the social, economic and environmental base of Nebraska's communities. Our programs must be ever-changing as Extension listens and responds to issues as they evolve. The Southeast Research and Extension District is unique because it serves both urban and rural communities Nebraska. The faculty and staff are committed to bringing the resources of the University and its research based information to the individuals and communities of Southeast Nebraska.
Project Support Varies according to program and project - for more information see http://www.southeast.unl.edu/
Project Website http://www.southeast.unl.edu/
Report
Current Status Continuous
Topic Groundwater
Project's Primary Contact Information
Name Perera-Estrada, Hugo
Unit Agronomy and Horticulture
Email hpereaestrada2@unl.edu
Phone 402-472-6085
Web Page
Project Information
Title Modeling Groundwater Nitrate Transport Beneath a Ground Water Quality Management Area in the Central Platte Region of Nebraska
Other(s) Mary E. Exner, School of Natural Resources, mspalding1@unl.edu; Roy Spalding, Agronomy and Horticulture, rspalding1@unl.edu 
Description A Ground Water Quality Management Area (GWQMA) is being evaluated to determine the effectiveness of producer practices in reducing high nitrate levels that result from excessive N-fertilizer and irrigation water applications. The assessment of nitrate movement in the primary and secondary aquifer relies on simulating groundwater flow and contaminant transport beneath the 588 km2 Phase III GWQMA. The Platte River is in hydraulic connection with the aquifer and forms the southern boundary of the model. The northern boundary parallels the northern edge of the GWQMA. Hydraulic conductivities from test hole data, irrigation well pedigree information and nitrate concentrations from 1988 to 2003 were input to a 3-D groundwater finite difference model. A Neumann or second-type boundary condition was established for the northern and southern model boundaries. Prescribed heads (Dirichlet-type boundary condition) were imposed on the upgradient and downgradient sides of the GWQMA. The thicknesses of the primary (upper) and secondary aquifers are somewhat variable in the investigated area as are hydraulic conductivities in the secondary aquifer. The groundwater model was calibrated in the steady-state mode with hydraulic head data from 1988 to 2003. The flow path and travel times within the study area result in an approximate evaluation of the susceptibility to nitrate contamination with transport. Results are described in 2-D and 3-D graphical visualizations. Hydraulic head and water quality data from adjacent monitoring wells screened in either the primary or secondary aquifers were used to quantify nitrate transport between the aquifers.
Project Support n/a
Project Website http://www.usawaterquality.org/conferences/2009/PDF/CEAP-all/Perera-Estrada09.pdf
Report
Current Status Completed
Topic Hydrology
Project's Primary Contact Information
Name Chen, Xun-Hong
Unit School of Natural Resources
Email xchen2@unl.edu
Phone 402-472-0772
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=19
Project Information
Title Hydrologic Connections in the Central Platte River Basin
Other(s) Mark E. Burbach, Conservation and Survey Division, mburbach1@unl.edu; Cheng Cheng, School of Natural Resources, ccheng2@unl.edu 
Description

The hydrologic properties of channel sediments have an important role in controlling hydrologic process in streams. This study focused on the water exchange between a stream and an aquifer induced by groundwater withdrawal, with the purpose of investigating the interbedded feature of channel sediments and to evaluate its effects on the calculation of streamflow depletion. Field work was conducted at nine study sites between Kearney and Columbus during the summers of 2005 and 2006. Direct-push techniques were used to produce electrical conductivity logs and to collect sediment cores. Permeameter tests were conducted on the sediment cores. Stream-aquifer simulation models were used to evaluate streamflow depletion for various types of channel sediments.

Sediment core samples were categorized into four groups:

  • sand and gravel,
  • sand and gravel with interbedded silt and clay layers,
  • fine sand with silt or clay layers, and
  • silt and clay with some sand and gravel.

In general coarse sediments occur in the western part of the study area, and the amount of fine sand, silt and clay increases eastward along the river. However, the sediments in the top two meters are about the same for all the sites, consisting mainly of sand and gravel.

Project Support Central Platte Natural Resources District, Upper Big Blue Natural Resources District, U.S. Geological Survey (through the University of Nebraska-Lincoln Water Center), U.S. Environmental Protection Agency
Project Website
Report Chen Hydrologic Connections.pdf
Current Status Published in Journal of Hydrology 2008 352:250-266
Topic Hydrology
Project's Primary Contact Information
Name Chen, Xun-Hong
Unit School of Natural Resources
Email xchen2@unl.edu
Phone 402-472-0772
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=19
Project Information
Title Groundwater Flow Model for the Lower Platte North Natural Resources District
Other(s) Cheng Cheng, School of Natural Resources 
Description Compared to other parts of Nebraska, the Platte River is wide and thus it is more challenging to characterize its hydrologic connections with the surrounding aquifers. The shallow aquifer consists of the alluvial and glacial deposits and displays strong heterogeneity. A three-dimensional groundwater flow model is developed using Visual MODFLOW to evaluate the impacts of groundwater withdrawals on the stream-aquifer system in the Lower Platte River Basin. The study area is about 65 miles by 50 miles and is located in eastern Nebraska. Two pumping tests were conducted to determine the hydraulic properties of the aquifers and aquitards, which are beneficial for model calibration. In-situ and laboratory permeameter tests of streambed sediments in the Platte River were per-formed to determine the streambed vertical hydraulic conductivity (Kv) values, which play an important role in controlling stream-aquifer interactions. The ground-water flow model integrates the geological, hydrological, precipitation, and soil information. The test-hole logs combining with the irrigation well logs were used to define the hydrostratigraphic units. The model is divided into 5 layers with 201 columns and 195 rows in each layer. The Platte River is simulated by the constant-head boundary package in MODFLOW. The model is calibrated using the groundwater level measurements of the USGS and local Natural Resources District observation wells from January 1950 to December 2004. The time interval of the calibration is divided into 660 stress periods, and each stress period consists of 10 time steps. Trial-and-error calibration is used to determine the hydraulic conductivity, specific yield, and specific storage of the aquifers and aquitards. Furthermore, the values of groundwater recharge and evapotranspiration are estimated by model calibration. After the model is well calibrated, it is used to determine the impacts of groundwater pumping over the 55 year periods on the streamflow in the Platte River.
Project Support Lower Platte North Natural Resources District
Project Website
Report
Current Status Underway
Topic Hydrology
Project's Primary Contact Information
Name Cheng, Cheng
Unit School of Natural Resources
Email ccheng2@unl.edu
Phone 402-472 0772
Web Page http://snr.unl.edu/aboutus/who/people/graduatestudent-member.asp?pid=798
Project Information
Title Statistical Distribution of Streambed Vertical Hydraulic Conductivity along the Platte River, Nebraska
Other(s) Xun-Hong Chen, School of Natural Resources, xchen2@unl.edu, Jinxi Song, Deming Wang 
Description Streambed vertical hydraulic conductivity (Kv) plays an important role in understanding and quantifying the stream-aquifer interactions. While several researchers have discussed the spatial variability of streambed horizontal hydraulic conductivity or Kv at one or several close-located sites in a river, they did not develop any statistical distribution analysis of streambed Kv at distant sites along a large river. In this paper, the statistical distribution and spatial variation of streambed Kv at 18 test sites in a 300-km reach of the Platte River in Nebraska are presented. Insitu permeameter tests using the falling-head method were carried out to calculate the streambed Kv values. Fine-grained sediments transported by two tributaries, the Loup River and the Elkhorn River, to the Platte River appear to result in lower streambed Kv values downstream of the confluences between the Platte River and the tributaries. The streambed Kv values were found to be normally distributed at nearly each test site. When the correlated Kv values were eliminated from the grid sampling plots, the remaining independent sub-datasets of streambed Kv values were still in normal distribution at each test site. Furthermore, the combined streambed Kv values upstream of the first confluence between the Platte River and the Loup River was normally distributed, which may be due to the lack of tributaries in-between and thus streambed sediments were well distributed in this reach and belonged to a single population of hydraulic conductivity values. In contrast, the combined dataset of all measurements conducted downstream of this confluence was no longer in normal distribution, presumably as a result of the mixing of different sediment sources.
Project Support Lower Platte North Natural Resources District, Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China
Project Website
Report Cheng_Distribution.pdf
Current Status Published in Water Resources Management DOI 10.1007/s11269-010-9698-5
Topic Hydrology
Project's Primary Contact Information
Name Franz, Trenton
Unit School of Natural Resources
Email tfranz2@unl.edu
Phone 402-472-8718
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=1906
Project Information
Title Advancing the Cosmic-Ray Method
Other(s) Hydroinnova LLC, Quaesta Instruments 
Description

When considering whether to deploy military personnel to remote locations, a critical part of the decision-making process is the over land travel time to that destination which largely depends on the strength of the soil and thus soil moisture. Despite its critical importance in many scientific disciplines our ability to measure soil moisture is largely restricted to small and large spatial scales leaving a critical measurement gap. In this work we will investigate the proximal sensing cosmic-ray neutron method to provide real-time intermediate scale (~0.5 km) soil moisture estimates. The objective of this project is to advance our understanding of the calibration function, which converts the measured property (the intensity of low-energy neutrons) into the variable of interest (the area-average soil moisture). This research will assess the potential and uncertainty of using remote sensing products and global data products to estimate the required local ancillary information for the calibration function as opposed to the current practice of local direct sampling. The use of spatially exhaustive datasets in the calibration function will greatly increase the possibility of using the cosmic-ray neutron probe to collect real-time mobile surveys of accurate soil moisture at intermediate scales.

Project Support US DOD Cold Regions Research and Engineering Laboratory
Project Website http://tfranz2.wix.com/trenton-franz
Report
Current Status Underway
Topic Hydrology
Project's Primary Contact Information
Name Korus, Jesse
Unit Conservation and Survey Division
Email jkorus3@unl.edu
Phone 402-472-7561
Web Page http://snr.unl.edu/aboutus/who/people/staff-member.asp?pid=1010
Project Information
Title Eastern Nebraska Water Resources Assessment (ENWRA)
Other(s)

Paul Hanson, School of Natural Resources / Conservation and Survey Division, phanson2@unl.edu; Sue Lackey, School of Natural Resources / Conservation and Survey Divison, slackey1@unl.edu; Matt Marxsen, School of Natural Resources / Conservation and Survey Division, mmarxsen2@unl.edu

Dana Divine, ENWRA Project Coordinator, ddivine@lpsnrd.org

Visit the Nebraska Maps and More website (http://nebraskamaps.unl.edu/home.asp) to order an excellent publication that describes this project more in-depth, Bulletin 1: Eastern Nebraska Water Resources Assessment (ENWRA) Introduction to a Hydrogeological Study.

 
Description

Eastern Nebraska contains 70% of the state's population, but is most limited in terms of the state's groundwater supplies. The population in this region is expected to increase; thus the need for reliable water supplies is paramount. Natural resources districts (NRDs), charged with ground water management in Nebraska, seek to improve their management plans in response to growing populations, hydrologic drought, and new conjunctive management laws. Detailed mapping and characterization is necessary to delineate aquifers, assess their degree of hydrologic connection with streams and other aquifers, and better predict water quality and quantity.

In a collaborative effort between local, state, and federal agencies, the ENWRA project has been initiated to gain a clearer understanding of the region's groundwater and interconnected surface water resources. These resources can be difficult to characterize because of the complex geology created by past glaciations. Acquiring geologic and hydrologic data in the eastern, or glaciated, part of Nebraska requires the use of multiple, innovative techniques. Currently, little is known about which techniques are most effective and feasible. Once identified, the most effective and feasible tools will be used to provide data, interpretations, and models for improved water resources management.

The ENWRA group has established three pilot test sites for intensive study using a variety of investigative techniques. The goal of the initial work being done at the three pilot test sites is to determine the location, extent, and connectivity of aquifers with surface waters, with the hope of expanding these investigative techniques across other portions of eastern Nebraska. The pilot test sites are located near Oakland, Ashland, and Firth with each site exhibiting differing geologic conditions. The techniques that will be utilized in the study include: 1) helicopter electromagnetic (HEM) surveys; 2) ground-based geophysical surveys; 3) test hole drilling; and 4) geochemical analysis, just to name a few. So far HEM surveys were completed over approximately one township at each site. Other techniques were used to provide "ground truth" data to support the HEM interpretations.

The agencies involved in the ENWRA are:

  • Lower Platte South Natural Resources District
  • Lower Platte North Natural Resources District
  • Papio Missouri River Natural Resources District
  • Lower Elkhorn Natural Resources District
  • Lewis and Clark Natural Resources District
  • Nemaha Natural Resources District
  • United States Geological Survey
  • University of Nebraska Lincoln Conservation and Survey Division
  • Nebraska Department of Natural Resources
  • Nebraska Department of Environmental Quality
Project Support Nebraska Department of Natural Resources Interrelated Water Management Plan/Program
Project Website http://www.enwra.org/
Report
Current Status HEM surveys are complete and 3-D aquifer diagrams have been prepared. Report Status: Ashland area report has been prepared and is under review and the Firth area report is being written.
Pic 1 Project Image
Pic Caption 1 Eastern Nebraska Water Resources Assessment (ENWRA) Study Sites. 
Topic Hydrology
Project's Primary Contact Information
Name Rundquist, Donald
Unit Center for Advanced Land Management Information Technologies
Email drundquist1@unl.edu
Phone 402-472-7536
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=103
Project Information
Title Nebraska Airborne Remote Sensing Program
Other(s) Rick Perk, CHAMP Project Manager, rperk1@unl.edu; Anatoly Gitelson, gitelson@calmit.unl.edu; Sunil Narumalani, sunil@calmit.unl.edu; Merlin Lawson, mlawson@calmit.unl.edu 
Description

CALMIT has joined forces with the UNL Department of Electrical Engineering and the UNO Aviation Institute to develop an aerial remote sensing research platform known as the Nebraska Airborne Remote Sensing Program (NARSP). A specially modified Piper Saratoga aircraft is being used as the base platform for deployment of a number of research grade remote sensing instruments. CALMIT's airborne remote sensing activities are centered around a suite of instruments associated with an AISA Eagle hyperspectral imaging system. This specific program is identified as CALMIT Hyperspectral Aerial Monitoring Program (CHAMP).

This technology has contributed to several projects:

  • To determine the condition and monitor the changing quality of Nebraska's 2500+ lakes and ponds - funded by the Nebraska Department of Environmental Quality and the U.S. Environmental Protection Agency.
  • To conduct a retrospective assessment of several different remote sensing platforms, with an emphasis on those remote sensing methods (e.g., airborne, Landsat, MODIS and MERIS) that most likely can be used for monitoring lakes routinely and operationally over a regional spatial extent - in collaboration with the North American Lake Management Society and the Universities of Minnesota and Wisconsin
  • To conduct remote sensing of coral communities.
  • To identify and delineate areas of noxious weeds and invasive species by using satellite imagery, hyperspectral aerial imagery, and GPS technology to aid in inventory surveys and mapping of these areas and assess the effectiveness of ongoing weed management actions.
  • To use airborne and satellite remote sensing systems to investigate and improve approaches to managing wheat streak mosaic (WSM), the most severe disease of winter wheat in the Great Plains.
Project Support Platform Development - National Science Foundation, National Aeronautics and Space Administration; specific project support noted above when possible.
Project Website calmit.unl.edu/champ/index.php
Report
Current Status Continuous
Topic Invasive Species
Project's Primary Contact Information
Name Allen, Craig
Unit Nebraska Cooperative Fish and Wildlife Research Unit
Email callen3@unl.edu
Phone 402-472-0229
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=647
Project Information
Title Monitoring, Mapping and Risk Assessment for Non-Indigenous Invasive Species in Nebraska
Other(s) Karie Decker, Nebraska Invasive Species Project Coordinator, invasives@unl.edu 
Description

Biological invasions are a growing threat to both human enterprise and ecological systems. This project provides resources to the public and private sector on: 1) the potential spread and impact of non-indigenous species in Nebraska; 2) actual and potential maps of non-indigenous species range (habitat specific maps at high resolution); 3) information regarding identification and management of potential invaders; 4) centralized information on management and impacts and potential spread of currently established non-indigenous species (a web portal); and 5) outreach within Nebraska to county-level governments and individual stakeholders regarding the management, surveillance and control of non-indigenous species. On February 7-8, 2008 a conference on non-indigenous species impacts, spread and management was held, focusing on state-of-our-knowledge and coordination of disparate management and information-provisioning efforts with a goal towards unification of disparate efforts.

This project is meant to build momentum towards a cohesive non-indigenous species biosecurity and management system in Nebraska that is integrated and relatively seamless across institutional boundaries. Spatially - based risk assessments that focus on non-indigenous invasive species impacts on at - risk native species and communities in Nebraska have been initiated with funding from the U.S. Geological Survey and the Nebraska Game and Parks Commission. The results and predictive models generated by this project will be delivered and made widely available to policy makers, management practitioners and landowners in Nebraska. Additional general information about potential invasive species and their impacts will be made easily accessible. Most of the goals listed above will produce and disseminate products that are dynamic, with interactive elements for the public and managers, including mapping of habitat-specific current and potential distributions of invasive species as well as a portal through which the public can inform the entities responsible for management of invasive species occurrence and spread - and vice versa.

Project Support U.S. Geological Survey, Nebraska Game and Parks Commission, Nebraska Environmental Trust
Project Website http://snr.unl.edu/invasives
Report
Current Status Continuing
Topic Water Quality
Project's Primary Contact Information
Name Bartelt-Hunt, Shannon
Unit Civil Engineering
Email sbartelt2@unl.edu
Phone 402-554-3868
Web Page http://www.engineering.unl.edu/civil/faculty/ShannonBartelt-Hunt.shtml
Project Information
Title Fate and bioavailability of steroidogenic compounds in aquatic sediment
Other(s) Daniel Snow, School of Natural Resources, dsnow1@unl.edu; Alan Kolok, UNO School of Public Health, akolok@mail.unomaha.edu 
Description

Objective: To improve understanding of the role of sediment in the environmental fate, transformation and subsequent bioavailability of steroidogenic compounds. The central hypothesis of this study is that sediment-associated steroids remain bioavailable.

Research Questions: Are sediment-associated steroids bioavailable? How do sediment characteristics influence steroid fate? What biologically active steroid metabolites are produced in sediment?

Project Support National Science Foundation
Project Website
Report
Current Status Ongoing
Pic 1 Project Image
Pic Caption 1 A model of the project's experimental design 
Topic Water Quality
Project's Primary Contact Information
Name Comfort, Steve
Unit School of Natural Resources
Email scomfort1@unl.edu
Phone 402-472-1502
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=21
Project Information
Title Testing the Efficacy of Permanganate to Remediate RDX in the Field
Other(s) Jeffrey Albano, CH2M Hill, Vitaly Zlotnik, Department of Geosciences, vzlotnik1@unl.edu, Todd Halihan, University of Oklahoma State, todd.halihan@okstate.edu, Mark Burbach, School of Natural Resources, mburbach1@unl.edu, Chanat Chokejaroenrat, Department of Civil Engineering, chanat@huskers.unl.edu, Sathapom Onanong, Nebraska Water Center, sonanong2@unl.edu, Wilson Clayton, Aquifer Solutions 
Description

The former Nebraska Ordnance Plant (NOP, Mead, NE) was a military loading, assembling, and packing facility that produced bombs, boosters, and shells during World War II and the Korean War. Ordnances were loaded with TNT, amatol (TNT and NH4NO3), tritional (TNT and Al), and Composition B (approx 60% RDX and 40% TNT). During ordnance production, process wastewater was routinely discharged into sumps and drainage ditches. These ditches became grossly contaminated with TNT and RDX with soil concentrations exceeding 5000 mg kg-1 near the soil surface. When rainfall exceeded infiltration rates, ponded water that formed in the drainage ditches literally became saturated with munitions residues (i.e., reached HE solubility limits) before percolating through the profile. Considering this process proceeded unabated for more than 40 years, it is no surprise that the ground water beneath the NOP eventually became contaminated. Further complicating groundwater concerns were the extensive use of trichloroethylene (TCE) to degrease and clean pipelines by the U.S. Air Force in the early 1960s. As a result, the RDX/TCE contaminant plume under the NOP facilities is estimated at several billion gallons and covers several square miles.

To prevent the contaminated plume from migrating offsite and in the direction of municipal well fields, an elaborate series of eleven extraction wells and piping networks were constructed to hydraulically contain the leading edge of the RDX/TCE plume. Currently this $33 million dollar facility treats approximately 4 million gallons of ground water per day with granular activated carbon (GAC). Annual operating costs are approximately $800,000/year with an estimated treatment time of 125 years. It should be noted that additional remediation efforts will be required in order to remediate the groundwater plumes within 125 years. This will include not only containment but treatment of "hot spots." Future costs will involve the installation of additional wells to contain a larger than originally anticipated plume under one of the load lines.

This project, which builds on previous UNL treatability studies, will test whether permanganate can effectively mineralize RDX to CO2 under in situ conditions. Although chlorinated solvents have been routinely treated with permanganate in the field, very limited data is available on the efficacy of permanganate to remediate RDX in the field. Hence, our research will quantify the effectiveness of permanganate to remove RDX in the field and provide initial cost/benefit data for future scale up considerations and applicability to other sites. Given that a biological treatment of RDX has already been completed at the NOP at the same location (i.e., Biologically Active Zone Enhancement (BAZE) pilot study), a cost/benefit comparison of these two technologies should be feasible once UNL's study is completed.

Project Support U.S. Environmental Protection Agency Region VII, U.S. Department of Defense's Environmental Security Technology Certification Program
Project Website
Report Comfort RDX Contamination.pdf
Current Status Published in the Ground Water Monitoring & Remediation 2010 30: 96-106
Topic Water Quality
Project's Primary Contact Information
Name Gitelson, Anatoly
Unit Center for Advanced Land Management Information Technologies
Email agitelson2@unl.edu
Phone 402-472-8386
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=39
Project Information
Title Using Remote Sensing to Detect the Threat of Blue-Green Algae
Description

Remote sensing is a useful tool for providing regulatory officials with the data necessary to make decisions regarding recreational waters. In 2005, CALMIT scientists undertook a collaborative effort with the Nebraska Department of Environmental Quality aimed at developing a tool to identify lakes where blue-green algae populations are present. The overall purpose was to incorporate those affected lakes into a toxic-algae alert procedure to provide early warnings to the public about the potential danger. This project also served to promote coordination and information sharing about toxic-algae issues among local units of government, lake associations, lake owners, and the public.

Both in-situ (close-range) and remote techniques were employed to detect and quantify in real-time the algal phytoplankton pigment concentration and composition (i.e., chlorophyll-a and phycocyanin in the water column). Two criteria were used to identify lakes and reservoirs with high probability of toxic algae: 1) chlorophyll concentration above 50 mg/m3; and 2) existence of blue green algae (the phycocyanin absorption feature has been used to indicate remotely the presence of blue-green algae). These criteria were tested by analytical assessment of toxic algae and the tests were positive: when the sensor systems indicated high probability of toxins, they were found in water samples.

Project Support Nebraska Department of Environmental Quality
Project Website http://www.calmit.unl.edu/research.php
Report
Current Status Completed
Topic Water Quality
Project's Primary Contact Information
Name Shea, Patrick
Unit School of Natural Resources
Email pshea1@unl.edu
Phone 402-472-1533
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=109
Project Information
Title Model to Identify Watershed Vulnerability and High Impact Programs
Other(s) Maribeth Milner, Agronomy and Horticulture, mmilner1@unl.edu; Gary D. Lynne, Agricultural Economics, glynne1@unl.edu; Mark E. Burbach, Conservation and Survey Division, mburbach1@unl.edu; Mark Bernards, Agronomy and Horticulture, mbernards2@unl.edu. 
Description

To protect water quality we need to better forecast environmental risks and guide conservation management decisions. Watershed vulnerability is determined by physical setting (soil, topography, and climate) and land management practices. If the most vulnerable areas can be determined, fields within those areas can be targeted for conservation management and mitigation of contamination. A model using the Soil Survey Geographic (SSURGO) Database is being developed to identify vulnerable areas and determine the potential impact of management practices on agrichemical runoff and leaching within impaired watersheds in Nebraska, Kansas, Missouri, and Iowa. Saunders County, NE is the primary site for development of the model, which will be applied in the Blue River watershed (Jefferson and Gage Counties in NE and Washington and Marshall Counties in KS).

To implement effective conservation practices it is necessary to understand what motivates the behaviors of producers and land managers. A survey tool will be used to determine what motivates the behaviors of producers and land managers in choosing practices and technologies in vulnerable areas. As part of this survey tool, an upstream individual's capacity and willingness to empathize with downstream water users about the quality and quantity of the water in Tuttle Creek Lake will be measured (see Cornhusker Economics article.) A statistical model will predict responsiveness to change and decision typologies will be mapped. A behavioral assessment model will be applied to selected areas upstream of Tuttle Creek, KS to predict the probability that producers and land managers will adopt the technologies and practices associated with total maximum daily load (TMDL) recommendations, as well as the extent of adoption. The information gained in this project can be used to design policy, incentive structures, and educational programs leading to the adoption of conservation management practices that improve and protect water quality.

Project Support USDA-CSREES National Integrated Water Quality Program.
Project Website http://www.agecon.unl.edu/Cornhuskereconomics/2008/8-20-08.pdf
Report Empathy Conditioned Conservation 1 14 09.pdf
Current Status Continuous
Topic Water Quality
Project's Primary Contact Information
Name Spalding, Roy
Unit Agronomy and Horticulture
Email rspalding1@unl.edu
Phone 402-472-8214
Web Page http://agronomy.unl.edu/spalding
Project Information
Title Enhanced In Situ Denitrification for a Municipal Well
Description

In 37% of small community water systems in Nebraska, at least one sample exceeded the drinking water standard for nitrate (10 parts per million) during the period from 1982 to 1998, and since then, nitrate levels have generally risen across the state. Currently there is not an economical treatment for the nitrate problem in small communities. Treatment processes using ion exchange or reverse osmosis are available, but the disposal of brine and waste concentrates to secured landfills, membrane foulings, the requirement of skilled and trained operators, and high capital equipment costs are some of the disadvantages that make these processes less appealing to small towns. Enhanced in situ (in the ground) biodenitrification is an emerging technology that offers a cost effective and environmentally friendly solution to the nitrate contamination problem; however, this technology has been ignored because of problems of clogged injection wells due to biofouling.

This project studied the practicality of in situ biodenitrification for an off-line municipal well in Wahoo with 12 ppm nitrate. An eight-well daisy system was installed to completely encircle the municipal well and provided the mechanism for pressure injection of organic-carbon into the nitrate-contaminated aquifer. Within two weeks from the start of injection, denitrification was observed; after two months, nitrate concentrations were reduced to 3 ppm throughout most of the denitrified zone. In situ biodenitrification was sustained for three months during Nebraska's warm season without injection well clogging. The cost of treatment was comparably less, especially when waste disposal costs are considered. Additional research is needed to address potential long-term operational concerns.

Project Support Nebraska Department of Environmental Quality, Central Platte Natural Resources District, U.S. Environmental Protection Agency Section 319 Non-Point Source Pollution Prevention Grant
Project Website
Report Spalding_Denitrification.pdf
Current Status Completed
Topic Watershed Project
Project's Primary Contact Information
Name Wortmann, Charles (advisor)
Unit Agronomy and Horticulture
Email cwortmann2@unl.edu
Phone 402-472-2909
Web Page http://agronomy.unl.edu/wortmann
Project Information
Title Reducing phosphorus and sediment loss in runoff from agricultural land, including the effects of management practices on nutrients and sediment in runoff determined with SWAT for Wahoo Creek Watershed
Other(s) Al-wadaey, Ahmed, alwadaey@gmail.com; supervisory committee members - Thomas Franti, Biological Systems Engineering, tfranti@unl.edu; Charles Shapiro, Northeast Research and Extension Center, cshapiro1@unl.edu; Dean Eisenhauer, Biological Systems Engineering, deisenhauer1@unl.edu 
Description

Nutrients and sediment loss from watersheds contributes to water quality pollution. A study was conducted to determine the impact of agriculture practices on nutrients and suspended sediment loss from a large watershed (Wahoo Creek) with an area of 93000 ha, and a small watershed (Duck Creek) with an area of 5321 ha.. Runoff and loading of sediment and nutrients were assessed using SWAT (Soil and Water Assessment Tool) simulation. Land use in the Wahoo Creek Watershed is 34% corn, 32% soybean, 24% pasture. The rest of the area is in alfalfa, trees, other crops, and low urban density. Yutan soil is 50% of the total soil area while Tomec and Pohocco soil is 9.4 and 8.5% respectively. In the Duck Creek Watershed, land use is 34% soybean, 53% corn and 25% pasture and the major soil series are Yutan (55%), Pohocco (17%), and Nodaway (14%). Eight years (1996-2003) of weather data, SSURGO soil data, and land use data were used for model simulation. SWAT divided the Wahoo Creek Watershed into 31 sub-basins. Duck Creek is a small watershed that was used to evaluate the existing management practices such as dams, terraces, grass and residue covers through modeling.

The result of the analysis indicated that terraces were the most effective conservation practices (about 60%) at reducing sediment yield and nutrients. Dams did not show a high influence on the outputs due to the low ratio basin area served by dams to the total drainage area of Duck Creek. Filter grass was also effective although it was implemented only in five sub-basins. Implementing agriculture practices such as terraces, ponds, dams decreased stream flow, nutrients and sediment loss at the watershed outlet by about 71% compared with non-agriculture practice scenarios.

Ahmed Al-wadaey's Doctoral Dissertation on Reducing Phosphorus and Sediment Loss in Runoff

Project Support
Project Website
Report
Current Status Completed - dissertation available - UNL Library electronic dissertation (Call # TD428.A37 )
Topic Wildlife
Project's Primary Contact Information
Name Anderson, Tara
Unit School of Natural Resources
Email taraleeanderson@huskers.unl.edu
Phone 402-432-5233
Web Page http://snr.unl.edu/aboutus/who/people/undergrad/anderson-tara.asp
Project Information
Title Population Dynamics of Shovelnose Sturgeon in the Lower Platte River
Other(s) Mark A. Pegg, School of Natural Resources, mpegg2@unl.edu; Martin Hamel, School of Natural Resources, mhamel2@unl.edu; Jeremy Hammen, School of Natural Resources, hammenj@huskers.unl.edu 
Description

Reduction in range and abundance of shovelnose sturgeon Scaphirhynchus platorynchus over the past century has been primarily attributed to critical habitat loss, poor water quality, and overharvest. These declines have led to concerns about populations of this once ubiquitous sturgeon species in large rivers throughout their Mississippi River Basin-wide range. However, detailed analyses of shovelnose sturgeon populations do not exist in several potentially important portions of their range, such as the Platte River, Nebraska. Shovelnose sturgeon, for example have been documented in the Lower Platte River, Nebraska (i.e., Columbus, NE to Plattsmouth, NE), but little is known about their population dynamics. Additionally, indications that seasonal fishing pressure in the Lower Platte River may affect local abundances, growth and mortality rates, and age at maturity of shovelnose sturgeon create a need for obtaining more specific population information. Researchers have initiated a five year study of the shovelnose sturgeon population in the Lower Platte River to characterize the abundance, distribution, demography, population dynamics, and genetics of shovelnose sturgeon. For preliminary data from the first year of sampling, view the presentation via the website like below.

Click here to read Tara Anderson's Master's Thesis on Shovelnose Sturgeon Population Dynamics

Project Support Nebraska Game and Parks Commission
Project Website http://watercenter.unl.edu/PRS/PRS2009/PPTs/Anderson%20Tara.pdf
Report
Current Status Completed
Topic Wildlife
Project's Primary Contact Information
Name Harvey, F. Edwin
Unit School of Natural Resources
Email feharvey1@unl.edu
Phone 402-472-8237
Web Page http://eas.unl.edu/people/faculty_page.php?lastname=Harvey&firstname=Ed&type=ADJ
Project Information
Title Salt Creek Tiger Beetle Research Project
Description

This extensive research project intends to determine the reproductive habitat parameters and develop rearing procedures for the federally endangered Salt Creek Tiger Beetle (SCTB). The SCTB is endemic to the saline wetlands of Lancaster County, Nebraska and was first described in the early 1900s. Based on museum records, it was apparently abundant in its type locality of the Capital Beach area of Lincoln, Nebraska. However, by the late 1980s, surveys indicated a dramatic decline in beetle populations, following corresponding losses in saline habitats upon which the beetle depends. Currently, the majority of beetles are limited to a single area along the banks of Little Salt Creek in Lancaster County. This means that in order to successfully recover the SCTB, it will be necessary to reestablish populations at restored historic sites and at new sites. This will require data on the appropriate management of the sites to provide reproductive habitat.

Although the basic life history and habitat requirements of the SCTB is known, much detailed biological information on the SCTB biology is lacking, and this information is essential for developing appropriate conservation and recovery plans. A well-defined group of beetle species occur exclusively in saline wetlands; however, physiological basis for these habitat preferences are not known. Considerable speculation surrounds the association of soil salinity with SCTB oviposition (laying eggs).

Harvey and his students are conducting research to characterize the hydrogeology and hydrochemistry of the alluvial and bedrock aquifers beneath eastern Nebraska's saline wetlands. They are also attempting to quantify the mixing relationship between fresh surface and shallow groundwater, and the deeper saline groundwater that moves to the surface under artesian pressure Their research is aimed ultimately at assessing the impact of both spatial and temporal hydrological changes across the wetland on the SCTB.

Dr. Harvey's portion of the larger research project will contribute to the conservation of the SCTB by identifying suitable release sites and developing habitat management guidelines for existing and restored habitat sites. The project will also use existing information to further refine and develop practices and protocols in order to successfully and efficiently captive-rear the SCTB.

Three Master's theses have been completed and a third is in progress:

  • Coke, Gordon R., (2008) Groundwater Dynamics Within the Saline Wetland Alluvium of the Little Salt Creek Valley, Lancaster County, Nebraska, MS Thesis, UNL School of Natural Resources. 79 p.
  • Gilbert, James, (2008) Groundwater Mixing Dynamics in the Saline Wetlands of the Little Salt Creek Watershed, Lancaster County, Nebraska, MS Thesis, UNL School of Natural Resources, 148 p.
  • Kelly, Bridget, (2011), Using Electrical Resistivity Imaging (ERI) to Map Saline Groundwater and Subaqueous Spring Discharge: An Example From the Saline Wetlands of Eastern Nebraska, MS Thesis, UNL Department of Earth and Atmospheric Sciences, 150 p.
Project Support Nebraska Game and Parks Commission
Project Website http://snr.unl.edu/harvey/projecttiger.htm
Report
Current Status Continuing
Pic 1 Project Image
Topic Wildlife
Project's Primary Contact Information
Name Pegg, Mark (advisor)
Unit Nebraska Cooperative Fish and Wildlife Research Unit
Email mpegg2@unl.edu
Phone 402-472-6824
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=739
Project Information
Title Catfish Population Dynamics in the Platte River, Nebraska
Other(s) Tony J. Barada, abarada2@unl.edu 
Description

Catfish angling is popular throughout the United States and catfish are the most sought after fish species in the Platte River. However, catfish management in the Platte River is minimal as little is known about current populations. The objective of this study was to determine the current status of channel catfish and flathead catfish populations in the central and lower Platte River. Specifically, the study evaluated population characteristics including relative abundance, size structure, condition, age, growth and mortality.

Channel catfish are much more abundant than flathead catfish in the Platte River. The current Platte River channel catfish population appears to be average, comparable to many Nebraska and Midwestern rivers. Population characteristics displayed considerable variation along the Platte River and some longitudinal patterns were evident. Channel catfish in the central Platte River had lower relative abundances, higher condition, greater size structure, faster growth and lower mortality compared to lower Platte River channel catfish. Key factors likely influencing differences in channel catfish population characteristics are prey availability, flow modifications, habitat characteristics, tributary inflows and angler exploitation. Water manipulations from the Loup River Power Canal were also identified as a possible negative influence on lower Platte River channel catfish populations because hydropeaking is likely creating a stressful environment. However, channel catfish in the central Platte River appear to have benefited from recent high flows that likely increased productivity and food availability in the central Platte River.

Tony Barada's Master's Thesis on Catfish Population Dynamics in the Platte River

Project Support Nebraska Game and Parks Commission, Federal Aid in Sportfish Restoration
Project Website
Report
Current Status Graduate thesis project completed - thesis available at UNL CY Thompson Library (Call # LD3656 2009 .B373)
Topic Wildlife
Project's Primary Contact Information
Name Pope, Kevin
Unit Nebraska Cooperative Fish and Wildlife Research Unit
Email kpope2@unl.edu
Phone 402-472-7028
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=759
Project Information
Title Population Assessment of Channel Catfish in Nebraska
Other(s) Lindsey Chizinski, Graduate Assistant 
Description

Channel catfish (Ictalurus punctatus) is an important sport fish, particularly in the Great Plains. In Nebraska, a majority of anglers target channel catfish, and fishing activities are a vital part of the state’s economy. Lentic water bodies provide the primary fishing opportunity for catfish anglers in Nebraska. Despite the popularity and economic importance of channel catfish, little is known of its population dynamics or habitat requirements, and existing studies often profile river populations.

Current standards for sampling channel catfish in lentic systems often yield inadequate catch to assess populations. The objective of this study was to utilize a recently developed sampling method, tandem-set hoop nets, to collect channel catfish in sufficient quantities to describe the effects of stocking and habitat variability on populations in lentic ecosystems. Three lentic ecosystems common to the Great Plains were considered: sand pits, flood-control reservoirs, and irrigation/power-generation reservoirs.

The influence of stocking on abundance and condition of channel catfish varied with ecosystem type. In sand pits, stocking negatively influenced fish condition, and only stocking on an annual basis positively influenced abundance. In flood-control reservoirs, stocking did not influence fish condition, but was associated with greater abundance. In irrigation/power-generation reservoirs, stocking did not influence fish condition or abundance. Additionally, there was evidence that mortality and growth rates varied with ecosystem type. In general, channel catfish from irrigation/power-generation reservoirs were predicted to experience slower growth and lower mortality, whereas channel catfish from sand pits were predicted to experience the fastest growth and highest mortality.

Catch rates of channel catfish were substantially less in this study compared to previous records of tandem-set hoop net surveys, but hoop nets were more efficient than the current standard gear, experimental gill nets, at capturing channel catfish. That is, 100 channel catfish could be captured with fewer sets of hoop nets than gill nets. However, catch rates and size structure of channel catfish in tandem-set hoop nets varied within the sampling season and between years. Furthermore, length-frequency distributions of channel catfish were dissimilar between hoop nets and gill nets.

Click here to read Lindsey Chizinski's Master's Thesis on Channel Catfish Population in Nebraska

Project Support Nebraska Game and Parks Commission
Project Website http://snr.unl.edu/necoopunit/research.main.html#channel_catfish
Report
Current Status Completed