NU Water-Related Research in District 30

The list below shows water-related research being conducted within your district or that affects your district. They are sorted by water topic, then by primary contact's last name.

Displaying 18 records found for District 30


Topic Crop Water Use
Project's Primary Contact Information
Name Cassman, Ken
Unit Agronomy and Horticulture
Email kcassman1@unl.edu
Phone 402-472-5554
Web Page http://agronomy.unl.edu/cassman
Project Information
Title Real-time Decision Support System for Deficit Irrigation - Hybrid-Maize
Other(s)  
Description

Hybrid-Maize is a computer program that simulates the growth of a corn crop under non-limiting or water-limited (rainfed or irrigated) conditions based on daily weather data. Specifically, it allows the user to:

  • assess the overall site yield potential and its variability based on historical weather data
  • evaluate changes in attainable yield using different combinations of planting date, hybrid maturity, and plant density
  • explore options for optimal irrigation management
  • conduct in-season simulations to evaluate actual growth up to the current date based on real-time weather data, and to forecast final yield scenarios based on historical weather data for the remainder of the growing season

Hybrid-Maize does NOT allow assessment of different options for nutrient management nor does it account for yield losses due to weeds, insects, diseases, lodging, and other stresses. Hybrid-Maize has been evaluated primarily in rainfed and irrigated maize systems of the U.S. Corn Belt. Caution should be exercised when applying this model to other environments as this may require changes in some of the default model parameters.

This project will develop a similar tool for irrigation scheduling for Nebraska soybean producers, and a real-time decision support system for deficit irrigation on corn, both based upon the Hybrid-Maize model. These tools will assist producers who have limited irrigation water supplies to optimize irrigation scheduling in real time for maximum yields, in particular during water-short years.

Project Support Nebraska Natural Resources Conservation Service, Nebraska Soybean Board
Project Website http://hybridmaize.unl.edu/
Report
Current Status Continuing - Software Available
Topic Crop Water Use
Project's Primary Contact Information
Name Irmak, Suat
Unit Biological Systems Engineering
Email sirmak2@unl.edu
Phone 402-472-4865
Web Page http://bse.unl.edu/sirmak2
Project Information
Title Nebraska Agricultural Water Management Demonstration Network
Other(s) Gary Zoubek, York County Extension, gzoubek@unl.edu 
Description

The Nebraska Agricultural Water Management Demonstration Network (NAWMDN) encourages the adoption of newer technologies that will enable farmers to use water and energy resources associated with irrigated crop production efficiently. NAWMDN launched in 2005 and started with 20 growers from south central Nebraska who joined the Network as collaborators. In 2008 an online tool named ETgage was added to enable participation by growers throughout Nebraska.

The NAWMDN ETgage project is one part of a system for testing cutting-edge technologies and creating a network with growers, UNL Extension, NRDs, NRCS, and crop consultants, and other interested partners, that will enable the adoption of water and energy conservation practices. The simplicity of the use and interpretation of the ETgage data, as well as its economic feasibility, makes it easy for farmers to monitor crop water use for effective irrigation management. In this project ETgages are used to estimate crop water use, and Watermark sensors are used to measure soil moisture to determine irrigation timing and amount. Each year, NAWMDN team members organize educational meetings during the growing season and over the winter to implement the project, teach participants how to use the ETgage and Watermark sensors for irrigation management, review the results, set goals, and obtain grower feedback. This project has been reported at local, regional, and national meetings.

In 2005, there were 18 demonstration sites. Some of the ETgage and Watermark sensors were read by growers and some were read weekly by Network core members. In 2006, the second year of the project, there were more than 50 demonstration sites. In 2007 more than 125 cooperators in nine NRDs and 22 counties were involved. In the fall of 2007, 89 producers involved in the NAWMDN were surveyed; of those 56% responding, the estimated corn water savings varied from 0-7.5" with an average savings of 2.6," while soybeans water savings varied from 0-4.8" with an average of 2.1." Using 2007 diesel prices, this resulted in total energy savings of $2,808,000 and $2,269,800 for corn or soybeans over 117,000 acres.

In 2008 over 300 active participants from 25 counties in 9 of Nebraska's 23 NRDs. An interactive web site was also created to inform growers and other clients about the network and to educate producers and industry professionals about using these two tools along with crop stage of growth information to make irrigation management decisions. This interactive web site has engaged the cooperating producers and enhanced learning. The site consists of a map of Nebraska's 93 counties on which producers can select specific counties to find a Google gps map with ETgauge locations marked. Producers can click on specific sites to see the weekly reference evapoptranspiration (ET) reported by producers. The site also includes information about the NAWMDN and how to use the various tools.

For detailed information, see Nebraska Agricultural Water Management Demonstration Network: Integrating Research and Extension/Outreach.

Project Support Partners include personnel from 19 extension offices, the Little Blue NRD, the Upper Big Blue NRD, Nebraska Association of Resources Districts, Nebraska Natural Resources Conservation Service, South Central Agricultural Laboratory, and the Central Nebraska Public Power and Irrigation District.
Project Website http://water.unl.edu/cropswater/nawmdn
Report
Current Status Continuing
Topic Crop Water Use
Project's Primary Contact Information
Name Martin, Derrel
Unit Biological Systems Engineering
Email dmartin1@unl.edu
Phone 402-472-1586
Web Page http://bse.unl.edu/dmartin2
Project Information
Title Enhancing Irrigation Management Tools and Developing a Decision System for Managing Limited Irrigation Supplies - Enhancing The Water Optimizer
Other(s) Chris Thompson, Agricultural Economics, cthompson2@unl.edu; Paul Burgener, Panhandle Research and Extension Center, pburgener2@unl.edu; Ray Supalla, Agricultural Economics, rsupalla1@unl.edu; Gary Hergert, Panhandle Research and Extension Center, ghergert1@unl.edu 
Description

The Water Optimizer is a computer model developed in response to several years of drought across the state and to farmers facing water restrictions. The model can be used by producers to evaluate management options when water is limiting due to drought or regulations; it can also be used by water planners or policy makers who wish to estimate the farm-level economic consequences of retiring acres or regulating the water supply. Released by UNL in 2005, the model is available for all counties in Nebraska to evaluate single fields for several crop options. Irrigated crops include: corn, soybeans, sorghum, wheat, alfalfa, edible beans and sunflowers. Dryland crops include: corn, soybeans, sorghum, sunflowers, alfalfa and wheat in continuous, summer fallow and eco-fallow rotations. Producers put information into a Microsoft Excel spreadsheet, including soil type and irrigation system options. Irrigation options include center pivot or gravity irrigation systems, well or canal delivery, and systems powered by electricity, diesel or natural gas. After entering this basic information, producers enter their production costs, irrigation costs, crop prices, crop type and available water. After these parameters have been set, the program calculates what crops will be most profitable with the given costs and available water. This gives the producer a "whole farm view" in considering how to manage available water supplies.

While the Water Optimizer is useful, it is limited in that it considers economic choices and consequences one field (well) and one year at a time. Three different departments (Agronomy-Horticulture, Agricultural Economics and Biological Systems Engineering) will combine their expertise to develop information to enhance Water Optimizer by: 1) improving the tool's function for crops grown in the semiarid High Plains, including canola, camelina, chickpeas, dry beans and sunflowers; 2) expanding the tool's geographic coverage area to additional counties in Nebraska including irrigated areas in Colorado and Kansas; 3) developing the capability to evaluate risk-management alternatives on a whole-farm basis as well as field by field; and 4) developing the capability to determine the best strategies for managing multi-year water allocations. The benefits of this project will be to maintain profitability and sustain farming enterprises with a limited irrigation supply. The goal is to conduct educational programming in conjunction with the project to encourage other producers to implement practices and concepts demonstrated in this project. An additional outcome will be transferring this information to other areas of declining ground water or surface water.

The Water Optimizer tool was developed to assist in addressing water shortages created by drought and interstate water rights litigation. The current model released November 2010, supports all 93 Nebraska counties.

Project Support U.S. Department of Agriculture Risk Management Agency
Project Website http://agecon.unl.edu/wateroptimizer
Report
Current Status Underway
Topic Drought
Project's Primary Contact Information
Name Hanson, Paul
Unit School of Natural Resources
Email phanson2@unl.edu
Phone 402-472-7762
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=758
Project Information
Title Pre-Historic Drought Records from the Eastern Platte River Valley
Other(s) R. Matt Joeckel, School of Natural Resources, rjoeckel3@unl.edu; Aaron Young, School of Natural Resources, ayoung3@unl.edu 
Description Recent studies have related large-scale dune activity in the Nebraska Sandhills and elsewhere on the western Great Plains to prehistoric megadroughts. At the eastern margin of the Great Plains, however, little or no effort has been expended toward identifying the impacts and severity of these climatic events. The eastern margin of the Great Plains should be of particular interest in paleclimate studies because it represents an important biogeographic boundary that may have shifted over time. In dunes around the present confluence of the Loup and Platte Rivers near Duncan, Nebraska, optical dating contrains, for the first time, the chronology of dune activity in the central-eastern margin of the Great Plains. A total of 17 optical age estimates taken from dune sediments clearly indicate two significant periods of dune activation at 5,100 to 3,500 years ago and 850-500 years ago. These reconstructed time intervals overlap both periods of large-scale dune activity in the Nebraska Sandhills and ancient droughts identified from other paleoclimate proxy records on the western Great Plains. The agreement between results from the eastern margin of the Great Plains and data from farther west indicate that megadroughts were truly regional in their effect. In order to further test a hypothesis of geographically-widespread megadrought effects, future work will date other dune deposits in eastern Nebraska from sites along the Loup and Elkhorn Rivers, as well as dunes in east-central Kansas and western Iowa.
Project Support United States Geological Survey Statemap Program
Project Website
Report Hanson Eastern Platte Valley.pdf
Current Status Published in Geomorphology 103 (2009) 555-561
Topic Extension
Project's Primary Contact Information
Name Hay, Paul
Unit Extension
Email phay1@unl.edu
Phone 402-223-1384
Web Page http://gage.unl.edu/web/gage/aboutus
Project Information
Title Extension Programming, Gage County, Nebraska
Description

Current programing and research includes a cropping systems rotation study;,earthworm populations in tilled versus no-till fields, water infiltration on tilled versus no-tilled fields, home water wells and treatment systems, and radon indoor air quality.

As of spring 2008 Gage County had:
  • 128 farmers with over 75,000 acres of no-till carbon contracts offered for sale on the Chicago Climate Exchange. Future efforts are focused on water quality cost share efforts targeting atrazine reduction in the Blue River system and unintended consequences of our ethanol and biofuel development in Nebraska.
  • 560 4-H members in 29 clubs and another 1500+ school enrichment contacts every year. Gage County 4-H features active and changing projects to meet youth needs like robotics, GPS training, conservancy breeds, corn rootworm surveys following UNL research guidelines, and 560 5th graders participating in an annual earth festival education program. The festival features seven half hour sessions on water and earth science education held outdoors at Camp Jefferson.
Project Support n/a
Project Website http://www.gage.unl.edu/
Report
Current Status Continuous
Topic Extension
Project's Primary Contact Information
Name Skipton, Sharon
Unit Southeast Research and Extension Center
Email sskipton1@unl.edu
Phone 402-472-3662
Web Page http://www.southeast.unl.edu/staffdir/Skipton_Sharon
Project Information
Title Southeast Research and Extension Center
Other(s) Gary Zoubek, York County Extension, gzoubek@unl.edu 
Description Each day University of Nebraska Extension makes a difference in the lives of adults and youth. The faculty and staff in the Southeast Research and Extension Center and the 28 County Offices work to bring relevant researched based information to people in communities, towns and urban centers. Our efforts rely increasingly on partnerships with government agencies, business, industry, schools and community organizations. Working together with our partners Extension strives to strengthen the social, economic and environmental base of Nebraska's communities. Our programs must be ever-changing as Extension listens and responds to issues as they evolve. The Southeast Research and Extension District is unique because it serves both urban and rural communities Nebraska. The faculty and staff are committed to bringing the resources of the University and its research based information to the individuals and communities of Southeast Nebraska.
Project Support Varies according to program and project - for more information see http://www.southeast.unl.edu/
Project Website http://www.southeast.unl.edu/
Report
Current Status Continuous
Topic Hydrology
Project's Primary Contact Information
Name Chen, Xun-Hong
Unit School of Natural Resources
Email xchen2@unl.edu
Phone 402-472-0772
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=19
Project Information
Title Hydrologic Connections in the Big and Little Blue River Basins
Other(s) Cheng Cheng, School of Natural Resources, ccheng2@unl.edu 
Description Over extraction of groundwater near a stream can lower stream stage and induce streamflow depletion when the stream and aquifer are hydrologically connected. The Little Blue River Basin is an area of intensive groundwater development for irrigation, and the streamflow depletion in this basin was determined by an analog model (Emery, 1966). However, the post audit of the model (Alley and Emery, 1986) suggested that the decline of water-levels was overestimated and streamflow depletion was underestimated. Therefore, it is necessary to re-evaluate stream-aquifer interactions in the basin. In this study, an area is chosen for this analysis from the basin and three main streams -- the Little Blue River, Big Sandy Creek, and Spring Creek are included. Channel sediments and structures play an important role in determining stream-aquifer interactions. Firstly, field and laboratory methods including geoprobe logging and permeameter tests are utilized to investigate the channel deposits in the three main streams in the Little Blue River Basin. Results show that channels have low hydraulic-permeable layers which reduce their hydraulic connections to the adjacent aquifers. Secondly, a groundwater flow model is constructed to identify the hydraulic properties of the aquifer and evaluate streamflow depletion under groundwater withdrawals in the study area. Modeling results indicate that streamflow depletion is very low and aquifer storage loss is the main source of groundwater pumpage.
Project Support Upper Big Blue Natural Resources Distrect, Lower Big Blue Natural Resources District, Little Blue Natural Resources District
Project Website
Report
Current Status Completed
Topic Hydrology
Project's Primary Contact Information
Name Korus, Jesse
Unit Conservation and Survey Division
Email jkorus3@unl.edu
Phone 402-472-7561
Web Page http://snr.unl.edu/aboutus/who/people/staff-member.asp?pid=1010
Project Information
Title Eastern Nebraska Water Resources Assessment (ENWRA)
Other(s)

Paul Hanson, School of Natural Resources / Conservation and Survey Division, phanson2@unl.edu; Sue Lackey, School of Natural Resources / Conservation and Survey Divison, slackey1@unl.edu; Matt Marxsen, School of Natural Resources / Conservation and Survey Division, mmarxsen2@unl.edu

Dana Divine, ENWRA Project Coordinator, ddivine@lpsnrd.org

Visit the Nebraska Maps and More website (http://nebraskamaps.unl.edu/home.asp) to order an excellent publication that describes this project more in-depth, Bulletin 1: Eastern Nebraska Water Resources Assessment (ENWRA) Introduction to a Hydrogeological Study.

 
Description

Eastern Nebraska contains 70% of the state's population, but is most limited in terms of the state's groundwater supplies. The population in this region is expected to increase; thus the need for reliable water supplies is paramount. Natural resources districts (NRDs), charged with ground water management in Nebraska, seek to improve their management plans in response to growing populations, hydrologic drought, and new conjunctive management laws. Detailed mapping and characterization is necessary to delineate aquifers, assess their degree of hydrologic connection with streams and other aquifers, and better predict water quality and quantity.

In a collaborative effort between local, state, and federal agencies, the ENWRA project has been initiated to gain a clearer understanding of the region's groundwater and interconnected surface water resources. These resources can be difficult to characterize because of the complex geology created by past glaciations. Acquiring geologic and hydrologic data in the eastern, or glaciated, part of Nebraska requires the use of multiple, innovative techniques. Currently, little is known about which techniques are most effective and feasible. Once identified, the most effective and feasible tools will be used to provide data, interpretations, and models for improved water resources management.

The ENWRA group has established three pilot test sites for intensive study using a variety of investigative techniques. The goal of the initial work being done at the three pilot test sites is to determine the location, extent, and connectivity of aquifers with surface waters, with the hope of expanding these investigative techniques across other portions of eastern Nebraska. The pilot test sites are located near Oakland, Ashland, and Firth with each site exhibiting differing geologic conditions. The techniques that will be utilized in the study include: 1) helicopter electromagnetic (HEM) surveys; 2) ground-based geophysical surveys; 3) test hole drilling; and 4) geochemical analysis, just to name a few. So far HEM surveys were completed over approximately one township at each site. Other techniques were used to provide "ground truth" data to support the HEM interpretations.

The agencies involved in the ENWRA are:

  • Lower Platte South Natural Resources District
  • Lower Platte North Natural Resources District
  • Papio Missouri River Natural Resources District
  • Lower Elkhorn Natural Resources District
  • Lewis and Clark Natural Resources District
  • Nemaha Natural Resources District
  • United States Geological Survey
  • University of Nebraska Lincoln Conservation and Survey Division
  • Nebraska Department of Natural Resources
  • Nebraska Department of Environmental Quality
Project Support Nebraska Department of Natural Resources Interrelated Water Management Plan/Program
Project Website http://www.enwra.org/
Report
Current Status HEM surveys are complete and 3-D aquifer diagrams have been prepared. Report Status: Ashland area report has been prepared and is under review and the Firth area report is being written.
Pic 1 Project Image
Pic Caption 1 Eastern Nebraska Water Resources Assessment (ENWRA) Study Sites. 
Topic Hydrology
Project's Primary Contact Information
Name Rundquist, Donald
Unit Center for Advanced Land Management Information Technologies
Email drundquist1@unl.edu
Phone 402-472-7536
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=103
Project Information
Title Nebraska Airborne Remote Sensing Program
Other(s) Rick Perk, CHAMP Project Manager, rperk1@unl.edu; Anatoly Gitelson, gitelson@calmit.unl.edu; Sunil Narumalani, sunil@calmit.unl.edu; Merlin Lawson, mlawson@calmit.unl.edu 
Description

CALMIT has joined forces with the UNL Department of Electrical Engineering and the UNO Aviation Institute to develop an aerial remote sensing research platform known as the Nebraska Airborne Remote Sensing Program (NARSP). A specially modified Piper Saratoga aircraft is being used as the base platform for deployment of a number of research grade remote sensing instruments. CALMIT's airborne remote sensing activities are centered around a suite of instruments associated with an AISA Eagle hyperspectral imaging system. This specific program is identified as CALMIT Hyperspectral Aerial Monitoring Program (CHAMP).

This technology has contributed to several projects:

  • To determine the condition and monitor the changing quality of Nebraska's 2500+ lakes and ponds - funded by the Nebraska Department of Environmental Quality and the U.S. Environmental Protection Agency.
  • To conduct a retrospective assessment of several different remote sensing platforms, with an emphasis on those remote sensing methods (e.g., airborne, Landsat, MODIS and MERIS) that most likely can be used for monitoring lakes routinely and operationally over a regional spatial extent - in collaboration with the North American Lake Management Society and the Universities of Minnesota and Wisconsin
  • To conduct remote sensing of coral communities.
  • To identify and delineate areas of noxious weeds and invasive species by using satellite imagery, hyperspectral aerial imagery, and GPS technology to aid in inventory surveys and mapping of these areas and assess the effectiveness of ongoing weed management actions.
  • To use airborne and satellite remote sensing systems to investigate and improve approaches to managing wheat streak mosaic (WSM), the most severe disease of winter wheat in the Great Plains.
Project Support Platform Development - National Science Foundation, National Aeronautics and Space Administration; specific project support noted above when possible.
Project Website calmit.unl.edu/champ/index.php
Report
Current Status Continuous
Topic Invasive Species
Project's Primary Contact Information
Name Allen, Craig
Unit Nebraska Cooperative Fish and Wildlife Research Unit
Email callen3@unl.edu
Phone 402-472-0229
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=647
Project Information
Title Monitoring, Mapping and Risk Assessment for Non-Indigenous Invasive Species in Nebraska
Other(s) Karie Decker, Nebraska Invasive Species Project Coordinator, invasives@unl.edu 
Description

Biological invasions are a growing threat to both human enterprise and ecological systems. This project provides resources to the public and private sector on: 1) the potential spread and impact of non-indigenous species in Nebraska; 2) actual and potential maps of non-indigenous species range (habitat specific maps at high resolution); 3) information regarding identification and management of potential invaders; 4) centralized information on management and impacts and potential spread of currently established non-indigenous species (a web portal); and 5) outreach within Nebraska to county-level governments and individual stakeholders regarding the management, surveillance and control of non-indigenous species. On February 7-8, 2008 a conference on non-indigenous species impacts, spread and management was held, focusing on state-of-our-knowledge and coordination of disparate management and information-provisioning efforts with a goal towards unification of disparate efforts.

This project is meant to build momentum towards a cohesive non-indigenous species biosecurity and management system in Nebraska that is integrated and relatively seamless across institutional boundaries. Spatially - based risk assessments that focus on non-indigenous invasive species impacts on at - risk native species and communities in Nebraska have been initiated with funding from the U.S. Geological Survey and the Nebraska Game and Parks Commission. The results and predictive models generated by this project will be delivered and made widely available to policy makers, management practitioners and landowners in Nebraska. Additional general information about potential invasive species and their impacts will be made easily accessible. Most of the goals listed above will produce and disseminate products that are dynamic, with interactive elements for the public and managers, including mapping of habitat-specific current and potential distributions of invasive species as well as a portal through which the public can inform the entities responsible for management of invasive species occurrence and spread - and vice versa.

Project Support U.S. Geological Survey, Nebraska Game and Parks Commission, Nebraska Environmental Trust
Project Website http://snr.unl.edu/invasives
Report
Current Status Continuing
Topic Production Agriculture
Project's Primary Contact Information
Name Burbach, Mark
Unit School of Natural Resources
Email mburbach1@unl.edu
Phone 402-472-8210
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=268
Project Information
Title Personality Characteristics and Conservation Tillage: Understanding Farmers to Improve Surface Water Quality in Tuttle Creek Lake, Kansas
Other(s) Courtney Quinn 
Description

Farmers chose to adopt conservation practices for varying reasons. There are many models of pro-environmental behaviors that include personal, physical, economic, and institutional factors. Models of farmer behavior that include personal factors often only examine farmers' education level and years farming. Testing additional factors would greatly improve our understanding of the relationship between farmers' knowledge, skills, and abilities and conservation tillage. This study examines three potential variables in relation to farmers' conservation tillage practices that benefit surface water quality, environmental attitude, work motivation, and moral reasoning about the environment.

This study focused on the Tuttle Creek Watershed, specifically Gage and Jefferson counties in southeast Nebraska and Washington and Marshall counties in northeast Kansas. Land use in this watershed is primarily agricultural, with approximately 72% in corn, soybean, grain sorghum or other crops, 10% in pastureland, and 10% in woodland. Herbicides are used extensively to control agricultural weeds. Soil infiltration rates in this area range from moderate to very slow. As a consequence, most soils have a moderate to very high potential of transporting contaminants to surface waters. As the base of the watershed, Tuttle Creek Reservoir is listed as impaired for siltation, eutrophication, atrazine and alachlor. Extremely high suspended solids and nutrient loads enter the reservoir during storm events and excessive siltation has occurred in the upper third of the original conservation pool reducing its volume by approximately 30%. In November 2007 4000 mail surveys were delivered to farmers in the study area. Data on the farmers' tillage practices and the personality variables, hypothesized to be antecedents to tillage practices, were collected. 505 surveys were used for this analysis.

Survey results suggest that farmers motivated by tangible rewards, personal standards, and a strong sense of purpose are likely to use conservation tillage. Farmers who obtained a higher degree of education have learned either a concern for the environment or the ability to apply newer conservation technologies. Farmers with higher sales also use more conservation practices. This suggests that income allows farmers to implement practices that may have high initial start-up costs. Farmers who earn a high percentage of their family income from farming also use more conservation practices. A heavy dependence on the success of the farm may cause farmers to have a long-term outlook and see the benefits of using conservation.

The negative relationship between use of conservation tillage and Self-concept External motivation suggests that efforts to encourage adoption of no-till practices need to target the entire farming community. The negative correlation between age and use of conservation tillage and between years farming and use of conservation tillage suggests than younger farmers, and those who have been farming for fewer years, are more interested and willing to use conservation practices. This may be because younger farmers have grown up during a time of concern for the natural environment. Younger farmers may also be less set in their ways and therefore willing to try new practices.

Other personal characteristics should be studied in addition to those studied as part of this project. For example, researchers should investigate whether farmers experience empathy with downstream residents and the distance of concern farmers consider when making decisions. Farmers' need for control, and their perceived ability to create desired change should be researched to discover if correlations or causations exist with likelihood to use conservation tillage.

Project Support USDA
Project Website
Report Burbach_Personality.pdf
Current Status Published in Great Plains Research 2008 Vol. 18:1, 103-114
Topic Water Quality
Project's Primary Contact Information
Name Gitelson, Anatoly
Unit Center for Advanced Land Management Information Technologies
Email agitelson2@unl.edu
Phone 402-472-8386
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=39
Project Information
Title Using Remote Sensing to Detect the Threat of Blue-Green Algae
Description

Remote sensing is a useful tool for providing regulatory officials with the data necessary to make decisions regarding recreational waters. In 2005, CALMIT scientists undertook a collaborative effort with the Nebraska Department of Environmental Quality aimed at developing a tool to identify lakes where blue-green algae populations are present. The overall purpose was to incorporate those affected lakes into a toxic-algae alert procedure to provide early warnings to the public about the potential danger. This project also served to promote coordination and information sharing about toxic-algae issues among local units of government, lake associations, lake owners, and the public.

Both in-situ (close-range) and remote techniques were employed to detect and quantify in real-time the algal phytoplankton pigment concentration and composition (i.e., chlorophyll-a and phycocyanin in the water column). Two criteria were used to identify lakes and reservoirs with high probability of toxic algae: 1) chlorophyll concentration above 50 mg/m3; and 2) existence of blue green algae (the phycocyanin absorption feature has been used to indicate remotely the presence of blue-green algae). These criteria were tested by analytical assessment of toxic algae and the tests were positive: when the sensor systems indicated high probability of toxins, they were found in water samples.

Project Support Nebraska Department of Environmental Quality
Project Website http://www.calmit.unl.edu/research.php
Report
Current Status Completed
Topic Water Quality
Project's Primary Contact Information
Name Shea, Patrick
Unit School of Natural Resources
Email pshea1@unl.edu
Phone 402-472-1533
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=109
Project Information
Title Model to Identify Watershed Vulnerability and High Impact Programs
Other(s) Maribeth Milner, Agronomy and Horticulture, mmilner1@unl.edu; Gary D. Lynne, Agricultural Economics, glynne1@unl.edu; Mark E. Burbach, Conservation and Survey Division, mburbach1@unl.edu; Mark Bernards, Agronomy and Horticulture, mbernards2@unl.edu. 
Description

To protect water quality we need to better forecast environmental risks and guide conservation management decisions. Watershed vulnerability is determined by physical setting (soil, topography, and climate) and land management practices. If the most vulnerable areas can be determined, fields within those areas can be targeted for conservation management and mitigation of contamination. A model using the Soil Survey Geographic (SSURGO) Database is being developed to identify vulnerable areas and determine the potential impact of management practices on agrichemical runoff and leaching within impaired watersheds in Nebraska, Kansas, Missouri, and Iowa. Saunders County, NE is the primary site for development of the model, which will be applied in the Blue River watershed (Jefferson and Gage Counties in NE and Washington and Marshall Counties in KS).

To implement effective conservation practices it is necessary to understand what motivates the behaviors of producers and land managers. A survey tool will be used to determine what motivates the behaviors of producers and land managers in choosing practices and technologies in vulnerable areas. As part of this survey tool, an upstream individual's capacity and willingness to empathize with downstream water users about the quality and quantity of the water in Tuttle Creek Lake will be measured (see Cornhusker Economics article.) A statistical model will predict responsiveness to change and decision typologies will be mapped. A behavioral assessment model will be applied to selected areas upstream of Tuttle Creek, KS to predict the probability that producers and land managers will adopt the technologies and practices associated with total maximum daily load (TMDL) recommendations, as well as the extent of adoption. The information gained in this project can be used to design policy, incentive structures, and educational programs leading to the adoption of conservation management practices that improve and protect water quality.

Project Support USDA-CSREES National Integrated Water Quality Program.
Project Website http://www.agecon.unl.edu/Cornhuskereconomics/2008/8-20-08.pdf
Report Empathy Conditioned Conservation 1 14 09.pdf
Current Status Continuous
Topic Watershed Project
Project's Primary Contact Information
Name Shea, Patrick J.
Unit School of Natural Resources
Email pshea1@unl.edu
Phone 402-472-1533
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=109
Project Information
Title Application of Landscape Vulnerability Models to Assess Off-Site Pesticide Movement in a Nebraska-Kansas Watershed
Other(s) Maribeth Milner, Agronomy and Horticulture, mmilner1@unl.edu; Mark Bernards, Agronomy and Horticulture, mbernards2@unl.edu; Phil Barnes, Biological and Agricultural Engineering, Kansas State University, lbarnes@ksu.edu 
Description

Some landscape positions are more likely than others to contribute to ground and surface water contamination from agricultural inputs and management practices. By identifying these areas at a regional scale, resources can be optimally targeted to address potential problems at the field scale. We developed SSURGO (Soil Survey Geographic)-based models to assess vulnerability to pesticide contamination of ground or surface waters across the landscape. Upon application of the models to a four-county (NE-KS) study area (Blue River Basin), between-county discontinuities emerged. Each county soil map is based on the particular expression of soil-forming factors as interpreted by local mapping teams, but these teams may or may not have input on the mapping of adjacent counties. Soil map units are typically blended across county boundaries, but these changes will not correct fundamental differences in the models used to create soil maps. The discontinuities in our study area may be due to an end moraine that cuts northwest to southeast (predominantly through the western counties), differences in mapping dates (1975-2003), and variations in data interpretation by agencies in Kansas and Nebraska. By incorporating slope and slope length data generated from relatively high resolution 10 m DEMs (digital elevation models), we increased sensitivity to topography at the SSURGO polygon level. Model output between the SSURGO-based and the DEM-based topographic data differed substantially for the eastern glaciated counties, but were relatively similar for the western counties. Assuming that the DEM is correct, this suggests a lack of consistency in defining the SSURGO representative slope and (or) slope lengths among counties. Although discontinuities occur between counties, model output can be used to identify the most vulnerable areas within each county. Model utility is demonstrated by comparing model output with surface water quality measurements in the watershed.

Maps resulting from our models show relative landscape vulnerability to pesticide leaching and runoff. This information can be used to prioritize and target areas within a watershed for conservation management practices and other actions that will reduce contamination of water resources and improve water quality. We applied the models to a four-county NE-KS study area (Big Blue Basin) and propose solutions to discontinuities between counties resulting from variations in data intepretation due to differences in mapping teams and dates. We use surface water quality measurements to show the utility of our models.

Project Support USDA-CSREES National Integrated Water Quality Program.
Project Website http://www.usawaterquality.org/conferences/2009/PDF/Wshed-poster/Shea09.pdf
Report
Current Status Continuing
Topic Wildlife
Project's Primary Contact Information
Name Harvey, F. Edwin
Unit School of Natural Resources
Email feharvey1@unl.edu
Phone 402-472-8237
Web Page http://eas.unl.edu/people/faculty_page.php?lastname=Harvey&firstname=Ed&type=ADJ
Project Information
Title Salt Creek Tiger Beetle Research Project
Description

This extensive research project intends to determine the reproductive habitat parameters and develop rearing procedures for the federally endangered Salt Creek Tiger Beetle (SCTB). The SCTB is endemic to the saline wetlands of Lancaster County, Nebraska and was first described in the early 1900s. Based on museum records, it was apparently abundant in its type locality of the Capital Beach area of Lincoln, Nebraska. However, by the late 1980s, surveys indicated a dramatic decline in beetle populations, following corresponding losses in saline habitats upon which the beetle depends. Currently, the majority of beetles are limited to a single area along the banks of Little Salt Creek in Lancaster County. This means that in order to successfully recover the SCTB, it will be necessary to reestablish populations at restored historic sites and at new sites. This will require data on the appropriate management of the sites to provide reproductive habitat.

Although the basic life history and habitat requirements of the SCTB is known, much detailed biological information on the SCTB biology is lacking, and this information is essential for developing appropriate conservation and recovery plans. A well-defined group of beetle species occur exclusively in saline wetlands; however, physiological basis for these habitat preferences are not known. Considerable speculation surrounds the association of soil salinity with SCTB oviposition (laying eggs).

Harvey and his students are conducting research to characterize the hydrogeology and hydrochemistry of the alluvial and bedrock aquifers beneath eastern Nebraska's saline wetlands. They are also attempting to quantify the mixing relationship between fresh surface and shallow groundwater, and the deeper saline groundwater that moves to the surface under artesian pressure Their research is aimed ultimately at assessing the impact of both spatial and temporal hydrological changes across the wetland on the SCTB.

Dr. Harvey's portion of the larger research project will contribute to the conservation of the SCTB by identifying suitable release sites and developing habitat management guidelines for existing and restored habitat sites. The project will also use existing information to further refine and develop practices and protocols in order to successfully and efficiently captive-rear the SCTB.

Three Master's theses have been completed and a third is in progress:

  • Coke, Gordon R., (2008) Groundwater Dynamics Within the Saline Wetland Alluvium of the Little Salt Creek Valley, Lancaster County, Nebraska, MS Thesis, UNL School of Natural Resources. 79 p.
  • Gilbert, James, (2008) Groundwater Mixing Dynamics in the Saline Wetlands of the Little Salt Creek Watershed, Lancaster County, Nebraska, MS Thesis, UNL School of Natural Resources, 148 p.
  • Kelly, Bridget, (2011), Using Electrical Resistivity Imaging (ERI) to Map Saline Groundwater and Subaqueous Spring Discharge: An Example From the Saline Wetlands of Eastern Nebraska, MS Thesis, UNL Department of Earth and Atmospheric Sciences, 150 p.
Project Support Nebraska Game and Parks Commission
Project Website http://snr.unl.edu/harvey/projecttiger.htm
Report
Current Status Continuing
Pic 1 Project Image
Topic Wildlife
Project's Primary Contact Information
Name Pope, Kevin
Unit Nebraska Cooperative Fish and Wildlife Research Unit
Email kpope2@unl.edu
Phone 402-472-7028
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=759
Project Information
Title Population Assessment of Channel Catfish in Nebraska
Other(s) Lindsey Chizinski, Graduate Assistant 
Description

Channel catfish (Ictalurus punctatus) is an important sport fish, particularly in the Great Plains. In Nebraska, a majority of anglers target channel catfish, and fishing activities are a vital part of the state’s economy. Lentic water bodies provide the primary fishing opportunity for catfish anglers in Nebraska. Despite the popularity and economic importance of channel catfish, little is known of its population dynamics or habitat requirements, and existing studies often profile river populations.

Current standards for sampling channel catfish in lentic systems often yield inadequate catch to assess populations. The objective of this study was to utilize a recently developed sampling method, tandem-set hoop nets, to collect channel catfish in sufficient quantities to describe the effects of stocking and habitat variability on populations in lentic ecosystems. Three lentic ecosystems common to the Great Plains were considered: sand pits, flood-control reservoirs, and irrigation/power-generation reservoirs.

The influence of stocking on abundance and condition of channel catfish varied with ecosystem type. In sand pits, stocking negatively influenced fish condition, and only stocking on an annual basis positively influenced abundance. In flood-control reservoirs, stocking did not influence fish condition, but was associated with greater abundance. In irrigation/power-generation reservoirs, stocking did not influence fish condition or abundance. Additionally, there was evidence that mortality and growth rates varied with ecosystem type. In general, channel catfish from irrigation/power-generation reservoirs were predicted to experience slower growth and lower mortality, whereas channel catfish from sand pits were predicted to experience the fastest growth and highest mortality.

Catch rates of channel catfish were substantially less in this study compared to previous records of tandem-set hoop net surveys, but hoop nets were more efficient than the current standard gear, experimental gill nets, at capturing channel catfish. That is, 100 channel catfish could be captured with fewer sets of hoop nets than gill nets. However, catch rates and size structure of channel catfish in tandem-set hoop nets varied within the sampling season and between years. Furthermore, length-frequency distributions of channel catfish were dissimilar between hoop nets and gill nets.

Click here to read Lindsey Chizinski's Master's Thesis on Channel Catfish Population in Nebraska

Project Support Nebraska Game and Parks Commission
Project Website http://snr.unl.edu/necoopunit/research.main.html#channel_catfish
Report
Current Status Completed
Topic Wildlife
Project's Primary Contact Information
Name Pope, Kevin
Unit Nebraska Cooperative Fish and Wildlife Research Unit
Email kpope2@unl.edu
Phone 402-472-7028
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=759
Project Information
Title Population Assessments of Temperate Basses in Nebraska Reservoirs
Other(s) Christopher Chizinski, School of Natural Resources, cchizinski2@unl.edu 
Description

Branched Oak and Pawnee reservoirs are two waterbodies in eastern Nebraska that provided important local fisheries for nearly half of Nebraska’s population. Littoral species of fish, such as black crappie, bluegill and largemouth bass, dominated the angler catch early in the life of these reservoirs. However, sedimentation and erosion have substantially altered the habitat of these reservoirs, which resulted in shift from clear-water littoral habitat to turbid-water limnetic habitat. These habitat changes caused a shift in the sportfish community from one dominated by shallow-water species such as black crappie, bluegill and largemouth bass, to one dominated by open-water species such as walleye and white bass. In addition to habitat changes, introductions of the white perch into these reservoirs have caused additional changes in the fish communities and their associated dynamics. Since their introduction, white perch numbers have increased precipitously over the last 15 years resulting in populations of stunted white perch. Elimination of the stunted status for these white perch populations through increased stocking of predators has been unsuccessful to date.

This study will provide an in depth analysis of the white perch populations in these two Nebraska reservoirs. Specifically, we will estimate the biomass of each white perch population and quantify the spatiotemporal (daily and seasonally) distribution of white perch in both reservoirs.

Project Support Nebraska Game and Parks Commission
Project Website http://snr.unl.edu/necoopunit/research.main.html#temperatebasses
Report
Current Status Underway
Topic Wildlife
Project's Primary Contact Information
Name Pope, Kevin (advisor)
Unit Nebraska Cooperative Fish and Wildlife Research Unit
Email kpope2@unl.edu
Phone 402-472-7028
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=759
Project Information
Title Impact of White Perch on Walleye and Predators of White Perch at Branched Oak and Pawnee Reservoirs
Other(s) Nathan Gosch, Graduate Research Assistant 
Description

Habitat alterations and accidental introduction of white perch into Branched Oak Lake have shifted the fish community from one dominated by littoral (near-shore) species (e.g., largemouth bass and bluegill) to one dominated by pelagic (open-water) species (e.g., white perch and gizzard shad). Along with the change in the fish community, angler trips to Branched Oak Reservoir have declined by 85% over the last two decades. Further, the white perch population has become stunted, meaning there is a high density of slow growing individuals that mature at a small size. Like Branched Oak Lake, Pawnee Lake historically supported an active and diverse fishery, and has experienced similar habitat alterations and accidental introduction of white perch; however, unlike Branched Oak Lake, stunting has not yet occurred for the white perch population in Pawnee Lake.

Studies at both lakes enable researchers to examine white perch interactions with other fishes in two similar Nebraska reservoirs having different white perch population stages (i.e., stunted and non-stunted). Food habits and diet overlap among white perch, crappie, walleye, white bass, and channel catfish are being evaluated. To study diet, fish stomachs are pumped and the contents analyzed to understand which fish species prey on white perch. All stomach content samples are analyzed and data synthesized. Stable isotope analyses of stomach contents have been conducted and the results confirmed.

By documenting the potential competition bottlenecks that exist between white perch and other fish species of importance, management program may be developed to eliminate stunted status for the white perch population in Branched Oak Lake and to prevent stunting of the white perch population in Pawnee Lake.

Project Support U.S. Geological Survey, Nebraska Game and Parks Commission
Project Website http://www.nlc.state.ne.us/epubs/U1500/B011-2008.pdf
Report
Current Status Completed - report available