NU Water-Related Research in District 40

The list below shows water-related research being conducted within your district or that affects your district. They are sorted by water topic, then by primary contact's last name.

Displaying 29 records found for District 40


Topic Crop Water Use
Project's Primary Contact Information
Name Cassman, Ken
Unit Agronomy and Horticulture
Email kcassman1@unl.edu
Phone 402-472-5554
Web Page http://agronomy.unl.edu/cassman
Project Information
Title Real-time Decision Support System for Deficit Irrigation - Hybrid-Maize
Other(s)  
Description

Hybrid-Maize is a computer program that simulates the growth of a corn crop under non-limiting or water-limited (rainfed or irrigated) conditions based on daily weather data. Specifically, it allows the user to:

  • assess the overall site yield potential and its variability based on historical weather data
  • evaluate changes in attainable yield using different combinations of planting date, hybrid maturity, and plant density
  • explore options for optimal irrigation management
  • conduct in-season simulations to evaluate actual growth up to the current date based on real-time weather data, and to forecast final yield scenarios based on historical weather data for the remainder of the growing season

Hybrid-Maize does NOT allow assessment of different options for nutrient management nor does it account for yield losses due to weeds, insects, diseases, lodging, and other stresses. Hybrid-Maize has been evaluated primarily in rainfed and irrigated maize systems of the U.S. Corn Belt. Caution should be exercised when applying this model to other environments as this may require changes in some of the default model parameters.

This project will develop a similar tool for irrigation scheduling for Nebraska soybean producers, and a real-time decision support system for deficit irrigation on corn, both based upon the Hybrid-Maize model. These tools will assist producers who have limited irrigation water supplies to optimize irrigation scheduling in real time for maximum yields, in particular during water-short years.

Project Support Nebraska Natural Resources Conservation Service, Nebraska Soybean Board
Project Website http://hybridmaize.unl.edu/
Report
Current Status Continuing - Software Available
Topic Crop Water Use
Project's Primary Contact Information
Name Irmak, Suat
Unit Biological Systems Engineering
Email sirmak2@unl.edu
Phone 402-472-4865
Web Page http://bse.unl.edu/sirmak2
Project Information
Title Nebraska Agricultural Water Management Demonstration Network
Other(s) Gary Zoubek, York County Extension, gzoubek@unl.edu 
Description

The Nebraska Agricultural Water Management Demonstration Network (NAWMDN) encourages the adoption of newer technologies that will enable farmers to use water and energy resources associated with irrigated crop production efficiently. NAWMDN launched in 2005 and started with 20 growers from south central Nebraska who joined the Network as collaborators. In 2008 an online tool named ETgage was added to enable participation by growers throughout Nebraska.

The NAWMDN ETgage project is one part of a system for testing cutting-edge technologies and creating a network with growers, UNL Extension, NRDs, NRCS, and crop consultants, and other interested partners, that will enable the adoption of water and energy conservation practices. The simplicity of the use and interpretation of the ETgage data, as well as its economic feasibility, makes it easy for farmers to monitor crop water use for effective irrigation management. In this project ETgages are used to estimate crop water use, and Watermark sensors are used to measure soil moisture to determine irrigation timing and amount. Each year, NAWMDN team members organize educational meetings during the growing season and over the winter to implement the project, teach participants how to use the ETgage and Watermark sensors for irrigation management, review the results, set goals, and obtain grower feedback. This project has been reported at local, regional, and national meetings.

In 2005, there were 18 demonstration sites. Some of the ETgage and Watermark sensors were read by growers and some were read weekly by Network core members. In 2006, the second year of the project, there were more than 50 demonstration sites. In 2007 more than 125 cooperators in nine NRDs and 22 counties were involved. In the fall of 2007, 89 producers involved in the NAWMDN were surveyed; of those 56% responding, the estimated corn water savings varied from 0-7.5" with an average savings of 2.6," while soybeans water savings varied from 0-4.8" with an average of 2.1." Using 2007 diesel prices, this resulted in total energy savings of $2,808,000 and $2,269,800 for corn or soybeans over 117,000 acres.

In 2008 over 300 active participants from 25 counties in 9 of Nebraska's 23 NRDs. An interactive web site was also created to inform growers and other clients about the network and to educate producers and industry professionals about using these two tools along with crop stage of growth information to make irrigation management decisions. This interactive web site has engaged the cooperating producers and enhanced learning. The site consists of a map of Nebraska's 93 counties on which producers can select specific counties to find a Google gps map with ETgauge locations marked. Producers can click on specific sites to see the weekly reference evapoptranspiration (ET) reported by producers. The site also includes information about the NAWMDN and how to use the various tools.

For detailed information, see Nebraska Agricultural Water Management Demonstration Network: Integrating Research and Extension/Outreach.

Project Support Partners include personnel from 19 extension offices, the Little Blue NRD, the Upper Big Blue NRD, Nebraska Association of Resources Districts, Nebraska Natural Resources Conservation Service, South Central Agricultural Laboratory, and the Central Nebraska Public Power and Irrigation District.
Project Website http://water.unl.edu/cropswater/nawmdn
Report
Current Status Continuing
Topic Crop Water Use
Project's Primary Contact Information
Name Irmak, Suat
Unit Biological Systems Engineering
Email sirmak2@unl.edu
Phone 402-472-4865
Web Page http://bse.unl.edu/sirmak2
Project Information
Title A Decision Support Tool to Increase Energy and Crop Water Use Efficiency for Corn and Soybean Production
Description

Energy costs coupled with limitations in water availability are threatening the sustainability of irrigation in the state. Energy costs for irrigation rose almost 100 percent for typical Nebraska irrigators from the spring of 2003 to the summer of 2006 and continue to rise sharply. The rising cost of fuel and the limited availability of water make producing maximum crop yield with minimal input imperative.

Nebraska growers need scientifically based and practical management strategies that can aid them in their decision-making process to enhance crop water-use efficiency and reduce energy use to achieve maximum profitability. Growers are looking for answers on how to make a maximum use of limited irrigation water and how to manage irrigation water to reduce pumping cost.

Crop simulation models with the capability of "real-time" assessment of crop and soil water status and yield prediction based on historical climate data represent a powerful new tool to help improve irrigation decisions and increase water-use efficiency especially for situations where the amount of available water supply is less than the full requirement for maximum crop yield. This project validates and demonstrates a decision-support tool for a real-time irrigation scheduling period, and releases the new tool as a software program for use by crop producers, crop consultants, and industry professionals. This tool will be used to assess energy requirement for different irrigation regimes to aid growers and state and federal agencies to make better-informed management decisions.

Project Support Upper Big Blue Natural Resources District, Gard Fund
Project Website
Report
Current Status Underway
Topic Crop Water Use
Project's Primary Contact Information
Name Kranz, Bill
Unit Northeast Research and Extension Center
Email wkranz1@unl.edu
Phone 402-475-3857
Web Page http://bse.unl.edu/web/bse/wkranz1
Project Information
Title Nebraska Agricultural Water Management Network - Northeast Activities
Other(s) Suat Irmak, Biological Systems Engineering, sirmak2@unl.edu; Ralph Kulm, rkulm1@unl.edu 
Description

This project is an extension of the Nebraska Agricultural Water Management Network and demonstrates the use of ETgages as a means of estimating potential crop water use in a local area. Because the closest weather station may be more than 20 miles away, weather data becomes less accurate; farmers within a 8-10 mile square area of a local ETgage could use the readings to get more accurate estimates of crop water use. Soil water sensors are used to ensure that irrigation amounts are appropriate for the field site. Crop water use estimates are supplied to local radio stations for broadcast on a daily basis.

Field sites near O'Neill, Pender, Schuyler and West Point include a demonstration and field testing of the ETgage and soil water sensors. Field data is being collected to determine how well a modified atmometer and watermark soil water sensors work in the sandy soils in this area. Some natural resources districts are providing cost share on this equipment. Eventually this network could be similar to the NeRAIN internet delivery program.

Project Support Nebraska Natural Resources Conservation Service
Project Website http://water.unl.edu/NAWMN
Report
Current Status Continuing
Topic Crop Water Use
Project's Primary Contact Information
Name Martin, Derrel
Unit Biological Systems Engineering
Email dmartin1@unl.edu
Phone 402-472-1586
Web Page http://bse.unl.edu/dmartin2
Project Information
Title Enhancing Irrigation Management Tools and Developing a Decision System for Managing Limited Irrigation Supplies - Enhancing The Water Optimizer
Other(s) Chris Thompson, Agricultural Economics, cthompson2@unl.edu; Paul Burgener, Panhandle Research and Extension Center, pburgener2@unl.edu; Ray Supalla, Agricultural Economics, rsupalla1@unl.edu; Gary Hergert, Panhandle Research and Extension Center, ghergert1@unl.edu 
Description

The Water Optimizer is a computer model developed in response to several years of drought across the state and to farmers facing water restrictions. The model can be used by producers to evaluate management options when water is limiting due to drought or regulations; it can also be used by water planners or policy makers who wish to estimate the farm-level economic consequences of retiring acres or regulating the water supply. Released by UNL in 2005, the model is available for all counties in Nebraska to evaluate single fields for several crop options. Irrigated crops include: corn, soybeans, sorghum, wheat, alfalfa, edible beans and sunflowers. Dryland crops include: corn, soybeans, sorghum, sunflowers, alfalfa and wheat in continuous, summer fallow and eco-fallow rotations. Producers put information into a Microsoft Excel spreadsheet, including soil type and irrigation system options. Irrigation options include center pivot or gravity irrigation systems, well or canal delivery, and systems powered by electricity, diesel or natural gas. After entering this basic information, producers enter their production costs, irrigation costs, crop prices, crop type and available water. After these parameters have been set, the program calculates what crops will be most profitable with the given costs and available water. This gives the producer a "whole farm view" in considering how to manage available water supplies.

While the Water Optimizer is useful, it is limited in that it considers economic choices and consequences one field (well) and one year at a time. Three different departments (Agronomy-Horticulture, Agricultural Economics and Biological Systems Engineering) will combine their expertise to develop information to enhance Water Optimizer by: 1) improving the tool's function for crops grown in the semiarid High Plains, including canola, camelina, chickpeas, dry beans and sunflowers; 2) expanding the tool's geographic coverage area to additional counties in Nebraska including irrigated areas in Colorado and Kansas; 3) developing the capability to evaluate risk-management alternatives on a whole-farm basis as well as field by field; and 4) developing the capability to determine the best strategies for managing multi-year water allocations. The benefits of this project will be to maintain profitability and sustain farming enterprises with a limited irrigation supply. The goal is to conduct educational programming in conjunction with the project to encourage other producers to implement practices and concepts demonstrated in this project. An additional outcome will be transferring this information to other areas of declining ground water or surface water.

The Water Optimizer tool was developed to assist in addressing water shortages created by drought and interstate water rights litigation. The current model released November 2010, supports all 93 Nebraska counties.

Project Support U.S. Department of Agriculture Risk Management Agency
Project Website http://agecon.unl.edu/wateroptimizer
Report
Current Status Underway
Topic Drought
Project's Primary Contact Information
Name Hanson, Paul
Unit School of Natural Resources
Email phanson2@unl.edu
Phone 402-472-7762
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=758
Project Information
Title Pre-Historic Drought Records from the Eastern Platte River Valley
Other(s) R. Matt Joeckel, School of Natural Resources, rjoeckel3@unl.edu; Aaron Young, School of Natural Resources, ayoung3@unl.edu 
Description Recent studies have related large-scale dune activity in the Nebraska Sandhills and elsewhere on the western Great Plains to prehistoric megadroughts. At the eastern margin of the Great Plains, however, little or no effort has been expended toward identifying the impacts and severity of these climatic events. The eastern margin of the Great Plains should be of particular interest in paleclimate studies because it represents an important biogeographic boundary that may have shifted over time. In dunes around the present confluence of the Loup and Platte Rivers near Duncan, Nebraska, optical dating contrains, for the first time, the chronology of dune activity in the central-eastern margin of the Great Plains. A total of 17 optical age estimates taken from dune sediments clearly indicate two significant periods of dune activation at 5,100 to 3,500 years ago and 850-500 years ago. These reconstructed time intervals overlap both periods of large-scale dune activity in the Nebraska Sandhills and ancient droughts identified from other paleoclimate proxy records on the western Great Plains. The agreement between results from the eastern margin of the Great Plains and data from farther west indicate that megadroughts were truly regional in their effect. In order to further test a hypothesis of geographically-widespread megadrought effects, future work will date other dune deposits in eastern Nebraska from sites along the Loup and Elkhorn Rivers, as well as dunes in east-central Kansas and western Iowa.
Project Support United States Geological Survey Statemap Program
Project Website
Report Hanson Eastern Platte Valley.pdf
Current Status Published in Geomorphology 103 (2009) 555-561
Topic Extension
Project's Primary Contact Information
Name Kranz, Bill
Unit Northeast Research and Extension Center
Email wkranz1@unl.edu
Phone 402-475-3857
Web Page
Project Information
Title Northeast Research and Extension Center - Haskell Agricultural Laboratory
Other(s) Charles Shapiro, Northeast Research and Extension Center, cshapiro1@unl.edu; Dave Shelton, Northeast Research and Extension Center, dshelton2@unl.edu; Sue Lackey, Conservation and Survey, slackey1@unl.edu; Terry Mader, Haskell Ag. Lab, tmader1@unl.edu 
Description

The role of the faculty and staff in this unit is to prevent or solve problems using research based information. Faculty and staff subscribe to the notion that their programs should be high quality, ecologically sound, economically viable, socially responsible and scientifically appropriate. Learning experiences can be customized to meet the needs of a wide range of business, commodity, or governmental organizations based upon the many subject matter disciplines represented. As part of the University of Nebraska, the Northeast Center faculty and staff consider themselves to be the front door to the University in northeast Nebraska. Through well targeted training backgrounds and continuous updating via the internet and other telecommunications technologies, faculty and staff have the most current information available to help their clientele.

The Haskell Ag. Lab is a University of Nebraska research farm located 1.5 miles east of the Dixon County Fairgrounds in Concord. This 320 acre farm was donated to the University of Nebraska by the C.D. Haskell family of Laurel in 1956. A number of demonstrations and projects are going on at the Haskell Ag. Lab, including a riparian buffer strip demonstration and a study to evaluate the effect of irrigation on soybean aphid population dynamics. Other studies focus on:

Subsurface Drip Irrigation: In the spring of 2007 a new subsurface drip irrigation system was installed on a 4 acre portion of the farm with sandy loam soils. The initial objective of the research is to collect field data to document crop water use rates for new corn varieties. Specifically, the work will concentrate on varieties that have different drought resistance ratings to improve the accuracy of the information provided to producers via the High Plains Regional Climate Center. In 2007, two varieties were planted and five irrigation treatments were imposed ranging from dryland to full irrigation. The data will also be used to develop improved local crop production functions for use in the Water Optimizer spreadsheet.

Hormones in Livestock Waste: This project will evaluate the fate of both naturally occurring and synthetic hormones that are associated with solid waste harvested from beef cattle feeding facilities. The research involves: 1) tracking the fate of hormonal compounds from the feedlot into surface run-off that would make its way into a liquid storage lagoon; 2) establishing stockpiled and composted sources of the solid manure removed from the feedlot; and 3) applying stockpiled and composted manure to cropland areas under different tillage systems and native grasses. Once the manure is applied the runoff potential will be evaluated using a rainfall simulator. Research will then focus on whether plants that could be a source of food for wildlife and/or domestic animals take up the hormones. (More information about this project is available; see projects listed under Dan Snow.)

Project Support Varies according to program and project - for more information see http://nerec.unl.edu/ Hormone Project funded by the U.S. Environmental Protection Agency
Project Website http://nerec.unl.edu/
Report
Current Status Continuous
Topic Extension
Project's Primary Contact Information
Name Kranz, Bill
Unit Northeast Research and Extension Center
Email wkranz1@unl.edu
Phone 402-584-3857
Web Page http://bse.unl.edu/web/bse/wkranz1
Project Information
Title Demonstration Projects and Field Tours
Other(s) Charles Shapiro, Northeast Research and Extension Center, cshapiro1@unl.edu. 
Description

A project associated with using beef manure compost on sandy soils is being conducted near Pierce and Plainview as a means of improving soil quality, using a beef production by-product in crop production and reducing commercial fertilizer application. The data collected at these two sites has been presented by Charles Shapiro at several educational meetings across northeast Nebraska. The project shows a slight improvement is some parameters, but the cost of transportation reduces the quantity of compost that can be transported and so the effect on soil physical properties is minimal, although soil phosphorus levels are increasing.

Near Pierce a project funded by the Lower Elkhorn Natural Resources District aims to demonstrate the impact of reducing season long water application by 10% on corn yield. At this site the farmer uses a computer control panel to speed up or slow down his center pivot automatically to apply 10% less or 10% more than his normal application, respectively. Nitrogen is being applied at three different rates to demonstrate the adequacy of the UNL Calculation Procedure.

Near Brunswick a project funded by the Upper Elkhorn Natural Resources District aims to develop improved nitrogen credit following soybeans in a corn-soybean rotation. Six nitrogen treatments and 6 different cropping sequences have been imposed to determine the nitrogen credit from soybeans on sandy soils. This project will run through the 2008 growing season. To date data suggests lower nitrogen credits on the sands than the silt loam soils in eastern Nebraska.

Project Support Lower Elkhorn Natural Resources District, Upper Elkhorn Natural Resources District
Project Website
Report
Current Status Continuous
Topic Groundwater
Project's Primary Contact Information
Name Swinehart, James B.
Unit School of Natural Resources
Email jswinehart1@unl.edu
Phone 402-472-7529
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=487
Project Information
Title Geology and Groundwater Supplies of Box Butte County, Nebraska
Other(s) Vernon L. Souders (project lead, retired); Frank A. Smith (retired), fsmith1@unl.edu 
Description

This report describes the relationship between the geology and the groundwater supplies in Box Butte County. It also evaluates the aquifers with respect to waterbearing characteristics and groundwater in storage. It further describes recharge to and discharge from the aquifers, outlines the movement of groundwater in the county, and summarizes the changes in groundwater storage that have occurred since the advent of irrigation in the county. Brief descriptions of the topography and drainage are included. An evaluation of climatic data for Box Butte County and the Nebraska Panhandle is incorporated into this report and several observations are made about climate in relation to groundwater and the irrigation requirements of crops. Brief mention is made of the soils and agricultural activity in the county.

The report estimates that to date (1975-1976) the amount of groundwater in storage has decreased 2-3% since 1938 and perhaps 1/2 of this decrease has occurred since 1964. The most serious water level declines were immediately north of Alliance in an area where the groundwater resource is large. This area had the highest concentration of irrigation wells and is also the oldest irrigated part of the county.

The report explicitly does not answer the question, "How long will the water supply last?" Rather the authors make the point that economic considerations and social attitudes are just as important as the characteristics of local groundwater supplies in answering that question.

Project Support Upper Niobrara White Natural Resources District, U.S. Geological Survey
Project Website
Report WSP-47.pdf
Current Status Test Holes Drilled Fall 1975-Spring 1976, Report Published 1980. An electronic copy of the report is available above; A hard copy is available via Nebraska Maps and More
Topic Hydrology
Project's Primary Contact Information
Name Ayers, Jerry
Unit School of Natural Resources
Email jayers1@unl.edu
Phone 402-472-0996
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=5
Project Information
Title Box Butte County / Niobrara River Numerical Groundwater Flow Model Studies
Description

The main objective of these studies was to determine the effect, if any, of large-scale regional pumping on the base flow of the Niobrara River. One study involved the construction and implementation of a groundwater-flow model for Box Butte County and the surrounding region to simulate hydrogeologic and hydraulic conditions, including groundwater extraction by large-capacity wells. The other study focused on the upper reaches of the Niobrara River to obtain estimates of stream-bed hydraulic conductivity (i.e., the ease with which water can move through pore spaces or fractures in the stream-bed) to be used as input to the modeling effort.

The groundwater-flow model was calibrated to predevelopment by primarily adjusting recharge flux through a trial-and-error process until a reasonable fit was obtained to the observed water table configuration of 1938. Once calibrated to predevelopment heads, transient simulations (i.e., simulations taking into account real-life conditions, thus modeling potential real-life changes in the basin), were run to model the change in heads due to pumping for the time period between 1938 and 2005. Results from these simulations were compared with observed heads for available years. After satisfactory results were obtained from the transient simulations, two additional scenarios were tested. These were simulations where all wells were turned off and where only those wells in Box Butte County and its proximity were active. The computer program ZONEBUDGET, which computes the water budget for user-defined zones, was run coincident with all simulations. Both head and water budget computation results were then used to determine the effect of pumping on the base flow the Niobrara River.

Based on model results, reductions in the base flow of the Niobrara River is due primarily to localized pumping effects, rather than from groundwater extraction on a regional scale. A comparison of simulated outflow values for selected reaches of the Niobrara River indicates that 1) flow characteristics in the uppermost part of the basin did not change greatly over the period of pumping indicating that base flow is not significantly reduced by large-scale pumping, 2) significant changes in base flow appear to have occurred after about 1960 in the middle and lower reaches, 3) the maximum change in flow for the middle reach due to all wells pumping is 19.6% and only 4.4% for Box Butte wells, with both maximum reductions occurring at the end of the 2005 pumping season, 4) the maximum change in flow for the lower reach is about 24.4% for all wells and only 2.5% for Box Butte wells, again, both occur at the end of the 2005 pumping season. Overall, the Niobrara River appears to be a gaining stream along most of its flow path, with the exception of the uppermost part of the basin.

The conclusion is that the affects of large-scale regional pumping appears to not impact base flow in the Niobrara River to any significant degree. Rather, localized pumping, especially where irrigation wells are situated near the river, reduces base flow on the order of 20% to 25%. For the most part, the Niobrara River valley is somewhat isolated from the extensive pumping taking place in Box Butte County. The upper reach is sufficiently distant from the pumping center that the cone of depression has little effect on the water table. Much of the middle reach transects units of the White River group that are considered to be nearly impermeable, and thus, provide a hydrogeologic barrier, preventing the northward expansion of the cone of depression. Pumping along the lower reach of the Niobrara River has a much greater influence on base flow reduction simply due to the proximity of the extraction wells to the river.

Project Support Nebraska Department of Natural Resources
Project Website http://www.dnr.state.ne.us/Publications_Studies/Box-Butte_ModelProjectCompletionReport.pdf
Report
Current Status Completed
Topic Hydrology
Project's Primary Contact Information
Name Korus, Jesse
Unit Conservation and Survey Division
Email jkorus3@unl.edu
Phone 402-472-7561
Web Page http://snr.unl.edu/aboutus/who/people/staff-member.asp?pid=1010
Project Information
Title Eastern Nebraska Water Resources Assessment (ENWRA)
Other(s)

Paul Hanson, School of Natural Resources / Conservation and Survey Division, phanson2@unl.edu; Sue Lackey, School of Natural Resources / Conservation and Survey Divison, slackey1@unl.edu; Matt Marxsen, School of Natural Resources / Conservation and Survey Division, mmarxsen2@unl.edu

Dana Divine, ENWRA Project Coordinator, ddivine@lpsnrd.org

Visit the Nebraska Maps and More website (http://nebraskamaps.unl.edu/home.asp) to order an excellent publication that describes this project more in-depth, Bulletin 1: Eastern Nebraska Water Resources Assessment (ENWRA) Introduction to a Hydrogeological Study.

 
Description

Eastern Nebraska contains 70% of the state's population, but is most limited in terms of the state's groundwater supplies. The population in this region is expected to increase; thus the need for reliable water supplies is paramount. Natural resources districts (NRDs), charged with ground water management in Nebraska, seek to improve their management plans in response to growing populations, hydrologic drought, and new conjunctive management laws. Detailed mapping and characterization is necessary to delineate aquifers, assess their degree of hydrologic connection with streams and other aquifers, and better predict water quality and quantity.

In a collaborative effort between local, state, and federal agencies, the ENWRA project has been initiated to gain a clearer understanding of the region's groundwater and interconnected surface water resources. These resources can be difficult to characterize because of the complex geology created by past glaciations. Acquiring geologic and hydrologic data in the eastern, or glaciated, part of Nebraska requires the use of multiple, innovative techniques. Currently, little is known about which techniques are most effective and feasible. Once identified, the most effective and feasible tools will be used to provide data, interpretations, and models for improved water resources management.

The ENWRA group has established three pilot test sites for intensive study using a variety of investigative techniques. The goal of the initial work being done at the three pilot test sites is to determine the location, extent, and connectivity of aquifers with surface waters, with the hope of expanding these investigative techniques across other portions of eastern Nebraska. The pilot test sites are located near Oakland, Ashland, and Firth with each site exhibiting differing geologic conditions. The techniques that will be utilized in the study include: 1) helicopter electromagnetic (HEM) surveys; 2) ground-based geophysical surveys; 3) test hole drilling; and 4) geochemical analysis, just to name a few. So far HEM surveys were completed over approximately one township at each site. Other techniques were used to provide "ground truth" data to support the HEM interpretations.

The agencies involved in the ENWRA are:

  • Lower Platte South Natural Resources District
  • Lower Platte North Natural Resources District
  • Papio Missouri River Natural Resources District
  • Lower Elkhorn Natural Resources District
  • Lewis and Clark Natural Resources District
  • Nemaha Natural Resources District
  • United States Geological Survey
  • University of Nebraska Lincoln Conservation and Survey Division
  • Nebraska Department of Natural Resources
  • Nebraska Department of Environmental Quality
Project Support Nebraska Department of Natural Resources Interrelated Water Management Plan/Program
Project Website http://www.enwra.org/
Report
Current Status HEM surveys are complete and 3-D aquifer diagrams have been prepared. Report Status: Ashland area report has been prepared and is under review and the Firth area report is being written.
Pic 1 Project Image
Pic Caption 1 Eastern Nebraska Water Resources Assessment (ENWRA) Study Sites. 
Topic Hydrology
Project's Primary Contact Information
Name Lenters, John
Unit School of Natural Resources
Email jlenters2@unl.edu
Phone 402-472-9044
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=743
Project Information
Title On Basin Residence Time and Annual Hydrology: Development of Annual Hydrology Model of the Sandhills Rivers
Other(s) Erkan Istanbulluoglu, University of Washington, erkani@u.washington.edu; Durelle Scott, Virginia Tech, dscott@vt.edu; Tiejun Wang, University of Washington-Seattle, tjwang@u.washington.edu 
Description

Simple models of annual and mean annual basin runoff and evapotranspration, such as the one proposed by Budyko, are useful for investigating the relationship between river flow and climate, and planning water storage structures in basins where long term streamflow measurements are not available. Such models are often based on the assumption that annual precipitation is in balance with annual runoff and evapotranspiration, and change in water storage of the basin is negligible. In basins where groundwater is the dominant source of streamflow this assumption hardly holds.

In this study first we develop a technique to investigate groundwater residence time to identify time scales over which a simple model of mean annual runoff can be meaningfully used. The model is applied in the Niobrara and Loup Rivers. Second we develop an annual hydrology model by solving the rate of change in basin storage. The runoff component of the model is based on the well-known linear reservoir model and a parameterization to characterize runoff on saturated areas. River water storages and streamflow diverted for irrigation are included as inputs in the model. The model explained as high as 80% of the annual variability of runoff in the Niobrara River at the Sparks gage. The model underscores the importance of saturation overland flow in the basin. Finally we used the model to investigate climate change scenarios, including extreme dry and wet conditions, as well as scenarios for the Medieval Warm Period during which Sandhills were destabilized as suggested by geological evidence.

Project presentation at the 2008 Water Colloquium

Project Support National Science Foundation
Project Website
Report Lenters_Groundwater.pdf
Current Status Published "On the role of groundwater and soil texture in the regional water balance: An investigation of the Nebraska Sand Hills", USA, Water Resour. Res., 45, W10413, doi:10.1029/2009WR007733.
Topic Hydrology
Project's Primary Contact Information
Name Pederson, Darryll
Unit Earth and Atmospheric Sciences
Email dpederson2@unl.edu
Phone 402-472-7563
Web Page http://eas.unl.edu/people/faculty_page.php?lastname=Pederson&firstname=Darryll&type=REG
Project Information
Title Waterfalls on the Niobrara River's Spring-fed Tributaries
Description The waterfalls on the spring-fed tributaries of the Niobrara River downstream from Valentine, Nebraska are unique in that the waterfalls are convex downstream. Groundwater discharge on either side of the waterfalls has led to significant weathering because of freeze/thaw cycles in the winter and wet/dry cycles in the summer. The water falling over the face of the falls protects them from the two weathering processes. Because the weathering rates on either side are higher than the erosion rates from falling water, the face of the falls is convex downstream. Similar waterfall face morphology occurs on the Island of Kauai where the main weathering processes are driven by vegetation and the presence of water.
Project Support National Park Service through the Great Plains Cooperative Ecosystem Studies Unit
Project Website http://snr.unl.edu/gpcesu/Project_library.htm
Report Waterfalls_Abstract.pdf
Current Status Completed
Topic Hydrology
Project's Primary Contact Information
Name Rundquist, Donald
Unit Center for Advanced Land Management Information Technologies
Email drundquist1@unl.edu
Phone 402-472-7536
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=103
Project Information
Title Nebraska Airborne Remote Sensing Program
Other(s) Rick Perk, CHAMP Project Manager, rperk1@unl.edu; Anatoly Gitelson, gitelson@calmit.unl.edu; Sunil Narumalani, sunil@calmit.unl.edu; Merlin Lawson, mlawson@calmit.unl.edu 
Description

CALMIT has joined forces with the UNL Department of Electrical Engineering and the UNO Aviation Institute to develop an aerial remote sensing research platform known as the Nebraska Airborne Remote Sensing Program (NARSP). A specially modified Piper Saratoga aircraft is being used as the base platform for deployment of a number of research grade remote sensing instruments. CALMIT's airborne remote sensing activities are centered around a suite of instruments associated with an AISA Eagle hyperspectral imaging system. This specific program is identified as CALMIT Hyperspectral Aerial Monitoring Program (CHAMP).

This technology has contributed to several projects:

  • To determine the condition and monitor the changing quality of Nebraska's 2500+ lakes and ponds - funded by the Nebraska Department of Environmental Quality and the U.S. Environmental Protection Agency.
  • To conduct a retrospective assessment of several different remote sensing platforms, with an emphasis on those remote sensing methods (e.g., airborne, Landsat, MODIS and MERIS) that most likely can be used for monitoring lakes routinely and operationally over a regional spatial extent - in collaboration with the North American Lake Management Society and the Universities of Minnesota and Wisconsin
  • To conduct remote sensing of coral communities.
  • To identify and delineate areas of noxious weeds and invasive species by using satellite imagery, hyperspectral aerial imagery, and GPS technology to aid in inventory surveys and mapping of these areas and assess the effectiveness of ongoing weed management actions.
  • To use airborne and satellite remote sensing systems to investigate and improve approaches to managing wheat streak mosaic (WSM), the most severe disease of winter wheat in the Great Plains.
Project Support Platform Development - National Science Foundation, National Aeronautics and Space Administration; specific project support noted above when possible.
Project Website calmit.unl.edu/champ/index.php
Report
Current Status Continuous
Topic Hydrology
Project's Primary Contact Information
Name Wang, Tiejun
Unit School of Natural Resources
Email tiejunwang215@yahoo.com
Phone
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=945
Project Information
Title Niobrara River Flow Variability
Other(s) Erkan Istanbulluoglu, University of Washington, erkani@u.washington.edu 
Description This project develops a database for hydrological and climatological variables within the Niobrara River basin so that researchers may study flow variability in the Niobrara River and its historical changes. Analysis includes all existing and discontinued streamflow gages within the system. Surface water diversion data are also collected to relate to changes in the flow discharge. Annual water yield of the river is studied at Sparks and Verdel gages. A lumped annual water yield model is developed to identify the natural variables that control runoff. The model uses annual runoff as forcing variable, as well as water diversions as outflux from the system. The model is currently being extended to monthly time scales.
Project Support Nebraska Game and Parks Commission, National Park Service
Project Website
Report
Current Status Underway
Topic Invasive Species
Project's Primary Contact Information
Name Allen, Craig
Unit Nebraska Cooperative Fish and Wildlife Research Unit
Email callen3@unl.edu
Phone 402-472-0229
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=647
Project Information
Title Monitoring, Mapping and Risk Assessment for Non-Indigenous Invasive Species in Nebraska
Other(s) Karie Decker, Nebraska Invasive Species Project Coordinator, invasives@unl.edu 
Description

Biological invasions are a growing threat to both human enterprise and ecological systems. This project provides resources to the public and private sector on: 1) the potential spread and impact of non-indigenous species in Nebraska; 2) actual and potential maps of non-indigenous species range (habitat specific maps at high resolution); 3) information regarding identification and management of potential invaders; 4) centralized information on management and impacts and potential spread of currently established non-indigenous species (a web portal); and 5) outreach within Nebraska to county-level governments and individual stakeholders regarding the management, surveillance and control of non-indigenous species. On February 7-8, 2008 a conference on non-indigenous species impacts, spread and management was held, focusing on state-of-our-knowledge and coordination of disparate management and information-provisioning efforts with a goal towards unification of disparate efforts.

This project is meant to build momentum towards a cohesive non-indigenous species biosecurity and management system in Nebraska that is integrated and relatively seamless across institutional boundaries. Spatially - based risk assessments that focus on non-indigenous invasive species impacts on at - risk native species and communities in Nebraska have been initiated with funding from the U.S. Geological Survey and the Nebraska Game and Parks Commission. The results and predictive models generated by this project will be delivered and made widely available to policy makers, management practitioners and landowners in Nebraska. Additional general information about potential invasive species and their impacts will be made easily accessible. Most of the goals listed above will produce and disseminate products that are dynamic, with interactive elements for the public and managers, including mapping of habitat-specific current and potential distributions of invasive species as well as a portal through which the public can inform the entities responsible for management of invasive species occurrence and spread - and vice versa.

Project Support U.S. Geological Survey, Nebraska Game and Parks Commission, Nebraska Environmental Trust
Project Website http://snr.unl.edu/invasives
Report
Current Status Continuing
Topic Recreation
Project's Primary Contact Information
Name Laing, Kim (Graduate Student)
Unit School of Natural Resources
Email kmeuhe1@unl.edu
Phone n/a
Web Page
Project Information
Title Assess Extent of Disturbance by Canoeists in Tributaries to the Niobrara National Scenic River
Other(s) Kyle Hoagland, School of Natural Resources, khoagland1@unl.edu 
Description

The Niobrara is a rich and unique ecosystem. Because it is relatively swift and shallow along this reach, the Niobrara is also a popular locale for tens of thousands of canoeists each year. Frequent bottom trampling and bank destabilization can result in a variety of short and long-term changes, including bottom substrate degradation, higher levels of drift including premature drift of aquatic larvae, increased turbidity and sedimentation, and the elimination of sensitive species.

The overall goal of this project is to assess the extent of disturbance by canoeists in tributaries to the Niobrara National Scenic River and its overall impact on stream ecosystem health. This assessment will be used to evaluate resource management practices in these unique habitats, while also serving as a basis for future comparisons to assess habitat degradation.

Ten tributaries, located along the south side of the Niobrara River, were sampled each month May through September. The tributaries were divided into five streams that were potentially impacted from visitors, located upstream, and five streams that were known to have no visitors. A mini-surber sampler was used to collect invertebrates from upstream sections of the tributaries (above the waterfalls with no visitors) and from downstream sections, below the waterfalls. Current velocity, depth, width, and distance from the edge of the tributary were recorded at each location. Water temperature, pH and conductivity were measured and a water sample taken to measure total nitrogen, total phosphorus and turbidity. In June, July and August visitor information was collected by volunteers at each potentially impacted tributary. Each volunteer counted the number of times the tributary was disturbed. This information, along with daily visitor use collected by Fort Niobrara, U.S. Fish and Wildlife Service, was used to calculate the amount of disturbance occurring at each location.

Project Support n/a
Project Website
Report
Current Status Completed
Topic Recreation
Project's Primary Contact Information
Name Shultz, Steve
Unit UNO Real Estate Research Center
Email sshultz@mail.unomaha.edu
Phone 402-554-2810
Web Page http://cba.unomaha.edu/dir/HomePageBio.cfm?id=347
Project Information
Title Economic and Social Values of Recreation on the Niobrara National Scenic River
Description

The goal of this project is to generate objective and accurate economic data and analyses that will allow the State of Nebraska to evaluate an in-stream appropriation on the Niobrara River for recreation purposes. Nebraska in-stream flow laws and regulations as stated in statute 46-2,116 specify that an in-stream appropriation must be in the public interest on the basis of:

  • The econmic, social, and environmental value of the in-stream use or uses including, but not limited to, recreation, fish and wildlife, induced recharge for municipal water systems, and water quality maintenance; and
  • The economic, social, and environmental value of reasonably foreseeable alternative out-of-stream uses of water that will be foregone or accorded junior status if the appropriation is granted.

The economic value of in-stream uses for recreation will involve estimates of both direct expenditures by river recreationists and the value of their use of the Niobrara Scenic River for boating and tubing using a travel cost model. The economic value of reasonably forseeable alternative out-of-stream uses will be determined by estimating the change in economic value of irrigation in the Niobrara River watershed based upon agricultural land sales from 2000 to 2007. The societal values associated with in-stream flows of and recreation on the Niobrara River will also be calculated using a telephone survey.

Project presentation at the 2008 Water Colloquium

Project Support Nebraska Game and Parks Commission
Project Website
Report Niobrara_Values.pdf
Current Status Completed
Topic Sandhills Studies and Modeling
Project's Primary Contact Information
Name Efting, Aris
Unit School of Natural Resources
Email aefting@unl.edu
Phone 402-472-3471
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=226
Project Information
Title Determining Toxic Algal Bloom Frequency in Nebraska Lakes
Description Research has been conducted in the Sandhills to determine whether or not there has been an increase in toxic algal blooms. Four different lakes were cored to identify the lakes' history of toxic algal blooms and determine whether there is an increase in toxin concentrations post 1950.
Project Support Layman Fund
Project Website
Report
Current Status Underway
Topic Sandhills Studies and Modeling
Project's Primary Contact Information
Name Wedin, Dave
Unit School of Natural Resources
Email dwedin1@unl.edu
Phone 402-472-9608
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=128
Project Information
Title Sand Hills Biocomplexity Project
Other(s) Vitaly Zlotnik, Department of Geosciences, vzlotnik1@unl.edu. 
Description

The Sand Hills, the largest sand dune area in the Western Hemisphere, is now stabalized by native grasses. This was not always the case. The Sand Hills have mobilized several times over the last 10,550 years. Major droughts destabilized significant portions of the Sand Hills as recently as 1000 years ago. The stability of the Sand Hills affects not only hundreds of cattle ranches, but also the recharge of the High Plains Aquifer. Of the total groundwater stored in this vast aquifer, 65% occurs in Nebraska and over half of that lies under the Sand Hills. The groundwater connection is obvious throughout the region. Due to the high water table, interdunal valleys in portions of the Sand Hills contain extensive complexes of lakes, wetlands, and naturally sub-irrigated wet meadows, which together cover over 10% of the landscape.

The Sand Hills Biocomplexity Project is a major federal project led by Professor Wedin. The project is aimed at testing whether:

  1. Evapotranspiration (ET) from wet valleys buffers the impacts of short-term drought on upland grasslands through local climate feedbacks. (resistance stability)
  2. When wetlands go dry, the combined effect of lost upland grass cover and lost wetland ET creates a desertification feedback that amplifies drought impacts.
  3. Since subregions of the Sand Hills differ in their extent of interdunal wetlands, subregions respond differently to paleo and historic droughts, thus enabling landowners to prepare for future droughts.
  4. Increased groundwater recharge when dunes are bare hastens the rise of groundwater levels, which, together with the rapid recovery of warm season grasses, restabilizes the dunes. (resilience stability)

The project's Grassland Destabilization Experiment (GDEX) is studying what happens to a Sand Hills dune when the vegetation dies. Researchers have created 10 circular plots at the Barta Brothers Ranch, each 120 meters in diameter, and used herbicide to kill all the vegetation on several of them. The plots are kept clear of vegetation, so that information on vegetation coverage, root mass, soil organic matter, and sand movement may be monitored and recorded to determine the stability of the plots. Results indicate that the Sand Hills may be more stable than previously thought; that is, ersosion is just starting to occur were vegetation was killed two years ago. Additional studies are needed to determine what happens when sand dunes become mobile.

As a part of this project, Professor Vitaly Zlotnik carries out research on groundwater recharge, hydraulic properties of the dune cover, and the climate change effects on groundwater recharge.

Project Support National Science Foundation
Project Website http://sandhills-biocomplexity.unl.edu/
Report
Current Status n/a
Topic Water Quality
Project's Primary Contact Information
Name Bartelt-Hunt, Shannon
Unit Civil Engineering
Email sbartelt2@unl.edu
Phone 402-554-3868
Web Page http://www.engineering.unl.edu/civil/faculty/ShannonBartelt-Hunt.shtml
Project Information
Title Fate and bioavailability of steroidogenic compounds in aquatic sediment
Other(s) Daniel Snow, School of Natural Resources, dsnow1@unl.edu; Alan Kolok, UNO School of Public Health, akolok@mail.unomaha.edu 
Description

Objective: To improve understanding of the role of sediment in the environmental fate, transformation and subsequent bioavailability of steroidogenic compounds. The central hypothesis of this study is that sediment-associated steroids remain bioavailable.

Research Questions: Are sediment-associated steroids bioavailable? How do sediment characteristics influence steroid fate? What biologically active steroid metabolites are produced in sediment?

Project Support National Science Foundation
Project Website
Report
Current Status Ongoing
Pic 1 Project Image
Pic Caption 1 A model of the project's experimental design 
Topic Water Quality
Project's Primary Contact Information
Name Kolok, Alan
Unit Biology, UNO
Email akolok@mail.unomaha.edu
Phone 402-554-3545
Web Page http://www.unomaha.edu/envirotox/whoiam.php
Project Information
Title The Watershed as A Conceptual Framework for the Study of Environmental and Human Health
Other(s) Cheryl L. Beseler, Department of Environmental, Agricultural and Occupational Health, UNMC, cbeseler@unmc.edu; Xun-Hong Chen, School of Natural Resources, xchen2@unl.edu; Patrick J. Shea, School of Natural Resources, pshea1@unl.edu 
Description

The watershed provides a physical basis for establishing linkages between aquatic contaminants, environmental health and human health. Current attempts to establish such linkages are limited by environmental and epidemiological constraints. Environmental limitations include difficulties in characterizing the temporal and spatial dynamics of agricultural runoff, in fully understanding the degradation and metabolism of these compounds in the environment, and in understanding complex mixtures. Epidemiological limitations include difficulties associated with the organization of risk factor data and uncertainty about which measurable endpoints are most appropriate for an agricultural setting. Nevertheless, the adoption of the watershed concept can alleviate some of these difficulties. From an environmental perspective, the watershed concept helps identify differences in land use and application of agrichemicals at a level of resolution relevant to human health outcomes. From an epidemiological perspective, the watershed concept places data into a construct with environmental relevance. This project uses the Elkhorn River watershed as a case study to show how the watershed can provide a conceptual framework for studies in environmental and human health.

Environmental sampling is necessary for evaluating exposure to hormone disrupting chemicals (HDCs); however, sampling is not systematic in time or space, nor does it represent the time frame necessary to adequately link it to human disease outcomes. Although data from municipal sources are available and reliable, countless private drinking water wells go untested and unmonitored. These wells may be in areas vulnerable to concentrated reservoirs of contaminants due to the soil type, infiltration rate, runoff potential, organic matter and erodibility coupled with land use in the region and the chemical properties of the contaminants introduced into the environment. The lack of a defined boundary and introduction of exposure heterogeneity is one of the primary reasons why associations to health outcomes cannot be shown in environmental epidemiological studies.

The use of the watershed provides a natural boundary and the potential within this boundary to obtain denominator data. Based on the characteristics of the watershed combined with sampling data, shared exposures can be identified and intermediate hypotheses tested using sentinel markers of exposure in fish and humans. Lastly, comparable groups identified in other watersheds with similar characteristics but different surrounding land uses can be used to replicate findings.

Project Support Department of Environmental, Agricultural and Occupational Health, University of Nebraska Medical Center
Project Website
Report Kolok_Watershed.pdf
Current Status Published in Environmental Health Insights 2009 3:1-10
Topic Water Quality
Project's Primary Contact Information
Name Kolok, Alan
Unit Biology, UNO
Email akolok@mail.unomaha.edu
Phone 402-554-3545
Web Page http://www.unomaha.edu/envirotox/whoiam.php
Project Information
Title Occurrence and biological effect of exogenous steroids in the Elkhorn River, Nebraska
Other(s) Daniel D. Snow, School of Natural Resources, dsnow1@unl.edu; Satomi Kohno, Department of Zoology, University of Florida, kohno@ufl.edu; Marlo K. Sellin, Department of Biology, UNO, msellin@mail.unomaha.edu; Louis J. Guillette Jr., Department of Zoology, University of Florida, ljg@ufl.edu 
Description

Recent studies of surface waters in North America, Japan and Europe have reported the presence of steroidogenic agents as contaminants. This study had three objectives:

  1. to determine if steroidogenic compounds are present in the Elkhorn River,
  2. to determine if sediments collected from the Elkhorn River can act as a source of steroidogenic compounds to aquatic organisms, and
  3. to determine if site-specific biological effects are apparent in the hepatic gene expression of fathead minnows.

Evidence was obtained using three approaches:

  1. deployment of polar organic chemical integrative samplers (POCIS),
  2. deployment of caged fathead minnows, and
  3. a laboratory experiment in which POCIS and fish were exposed to sediments from the deployment sites.

Deployment sites included: the Elkhorn River immediately downstream from a Nebraska wastewater treatment plant, two waterways (Fisher Creek and Sand Creek) likely to be impacted by runoff from cattle feeding operations, and a reference site unlikely to be impacted by waste water inputs. The POCIS extracts were analyzed for a number of natural steroids and metabolites, as well as four different synthetic steroids: ethinylestradiol, zearalonol, 17-trenbolone and melengestrol acetate. Estrogenic and androgenic metabolites, as well as progesterone and trace levels of melengestrol acetate were detected in POCIS deployed at each site. POCIS deployed in tanks containing field sediments from the four sites did not accumulate the synthetic steroids except for ethinylestradiol, which was detected in the aquarium containing sediments collected near the wastewater treatment plant. Fish deployed in Sand Creek and at the wastewater treatment plant experienced significantly elevated levels of gene expression for two genes (StAR and P450scc) relative to those deployed in Fisher Creek. Fish exposed to the sediments collected from Sand Creek had significantly higher levels of hepatic StAR and P450scc gene expression than did fish exposed to sediments from the two other field sites, as well as the no-sediment control tank.

In conclusion:

  1. detectable levels of steroidogenic compounds were detected in passive samplers deployed in the Elkhorn River,
  2. sediments do not appear to be a significant source for steroidogenic compounds, and
  3. site-specific differences were found in mRNA expression among the different treatment groups of fish; however, a functional explanation for these differences is not readily forthcoming.
Project Support Nebraska Game and Parks Commission, U.S. Geological Survey's Section 104b Program as administered by the UNL Water Center, US Environmental Protection Agency Greater Opportunities Fellowship, Dr. Daniel Villeneuve, US Environmental Protection Agency
Project Website
Report Kolok_Elkhorn.pdf
Current Status Published in Science of the Total Environment 2007 388:104-115
Topic Water Quality
Project's Primary Contact Information
Name Spalding, Roy
Unit Agronomy and Horticulture
Email rspalding1@unl.edu
Phone 402-472-8214
Web Page http://agronomy.unl.edu/spalding
Project Information
Title Risk-Managed Approach for Routing Petroleum Pipelines: Keystone XL Pipeline, Nebraska
Other(s) Aaron Hirsh, Department of Civil Engineering, ajhirsh@huskers.unl.edu 
Description

TransCanada’s proposed international crude oil pipeline route over sensitive, relatively pristine, subirrigated land underlain by the Ogallala aquifer led to increased scrutiny and eventual rejection of the Keystone XL pipeline. Pipeline routing could be made much more acceptable by adopting risk-managed routes that lessen the potential to adversely impact high-quality groundwater and, should a release occur, decrease the longevity of hazardous groundwater contaminants. Threats to water quality are taken quite seriously in states like Nebraska where 85% of the population depend on groundwater for potable water.

The authors proposed a southeasterly route through Holt, Antelope and Pierce counties, to the existing north-south Keystone 1 pipeline, avoiding the Ogallala aquifer beneath the fragile and pristine Sandhills, sub-irrigated meadows and areas with very shallow water tables. The risk-managed route through these three counties is through overlying row-cropped land underlain by already contaminated Ogallala groundwater to the Keystone 1 corridor.

Since little is known about the potential movement of dilbit (diluted bitumen) to groundwater at release sites, the study states that one of the best ways to minimize risks from a potential spill is to carefully select a pipeline route with minimal environmental risk and reasonable length. There are so many variables including the chemical composition of the dilbit, ambient temperature, depth to groundwater, emergency cleanup practices and other factors, that predicting the exact mechanism of contaminant movement to the aquifer is complicated. Additionally, the existing nitrate contamination in Holt, Antelope and Pierce counties stretches for over 100 miles and 1 million acres. These leached soils enhance the degradation of hazardous petroleum compounds in groundwater.

Project Support Nebraska Ethanol Board and Hatch grant 21-6222-1055
Project Website
Report Risk_Managed_Petroleum_Pipeline.pdf
Current Status Completed
Pic 1 Project Image
Topic Water Quality
Project's Primary Contact Information
Name Thomas, Steve
Unit School of Natural Resources
Email sthomas5@unl.edu
Phone 402-472-4030
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=745
Project Information
Title Understanding Cyanobacteria Blooms in Willow Creek Reservoir
Other(s) Amy Burgin, School of Natural Resources, aburgin2@unl.edu 
Description

Cyanobacteria, also known as blue-green or toxic algae, pose a health threat to people and animals that come in contact with lake water suffering from an algal bloom and result in economic hardships to local communities that depend on recreational dollars spent at lakes experiencing blooms. Willow Creek Reservoir near Pierce, Nebraska is one such lake that has experienced several cyanobacterial blooms since its construction in 1984. When placed on alert status due to cyanobacteria levels, the estimated impact is an 80% drop in boaters and beach goers, a 33% drop in camper numbers, and a 50% drop in angler visitation. Local stakeholders such as the Lower Elkhorn Natural Resources District wish to reduce these blooms to the extent possible. However, in order to do so, a better understanding of the causes of those blooms needs to be established.

This project proposes to achieve that understanding by: (1) characterizing cyanobacteria levels in Willow Creek Reservoir; (2) characterizing potential causes of those cyanobacteria blooms; (3) identifying relations between cyanobacteria levels in Willow Creek Reservoir and potential causes; and (4) sharing those findings with the public and local stakeholders to provide guidance for managing cyanobacteria in Willow Creek Reservoir. These tasks will be accomplished over a 3-year period through a collaborative effort between six separate agencies and by leveraging funding from local, state, and federal sources in addition to those requested from the Nebraska Environmental Trust Fund.

Project Support Lower Elkhorn Natural Resources District
Project Website
Report
Current Status Underway
Topic Wetlands
Project's Primary Contact Information
Name Allen, Craig
Unit Nebraska Cooperative Fish and Wildlife Research Unit
Email callen3@unl.edu
Phone 402-472-0229
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=647
Project Information
Title Missouri River Mitigation: Implementation of Amphibian Monitoring and Adaptive Management for Wetland Restoration Evaluation
Other(s) Martin Simon, Benedictine College; Michelle Hellman, School of Natural Resources, michelle.hellman@huskers.unl.edu; Ashley Vanderham, School of Natural Resources, avanderham@huskers.unl.edu 
Description

Data are being collected to determine what constitutes a successful wetland restoration, given the desired goals of the U.S. Army Corps of Engineers. Herpetofauna primarily amphibians are being used as indicators of wetland success. This will be accomplished by quantifying the occurrence and recruitment of amphibians at existing mitigation sites and formulating models of quality wetland restorations. These models will be used by managers in future restorations and for adaptive management approaches to the design of new wetland restorations. The study area is the Missouri River corridor of Iowa, Kansas, Missouri and Nebraska.

This project is a multi-institutional monitoring program that focuses on tightly linking monitoring with hypothesis testing in an adaptive framework. The design consists of frog call surveys to determine occupancy rates for a large number of wetlands on numerous restoration properties, coupled with intensive sampling of frogs, turtles and salamanders to assess abundance and recruitment on eight restored wetland complexes in four states. The focus areas for the Nebraska Coop Unit are three Missouri River wetland complexes located from Falls City to Omaha, Nebraska. Project collaborators at Benedictine College in Kansas are focusing on the Benedictine Wetlands in Kansas.

Click here to read a fact sheet on this project

Project Support United States Geological Survey, United States Army Corps of Engineers
Project Website http://snr.unl.edu/necoopunit/research.main.html#missouririvermitigation
Report
Current Status Underway
Topic Wildlife
Project's Primary Contact Information
Name Pegg, Mark
Unit School of Natural Resources
Email mpegg2@unl.edu
Phone 402-472-6824
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=739
Project Information
Title Habitat Usage of Missouri River Paddlefish Project
Description Sediment from the Niobrara River has created a delta area near the headwaters of Lewis and Clark Lake, the reservoir formed by Gavins Point Dam on the Missouri River. This sediment aggregation has reduced reservoir volume and threatens to fill the reservoir; therefore, restoration of reservoir capacity has been proposed by means of high-velocity water releases from upstream mainstem dams. Biologists, however, have reported that this delta area may serve as spawning grounds for native fishes like paddlefish, and may provide suitable spawning habitat for federally endangered pallid sturgeon. This situation has created a unique paradox where information is needed to provide insight into fulfilling both the river management needs and biological needs in the Missouri River. This project will use paddlefish telemetry to study spawning success.

Click here to read Brenda Pracheil's dissertation on Paddlefish populations

Project Support Nebraska Environmental Trust
Project Website
Report Pracheil et al_Fisheries_2012.pdf
Current Status Completed
Topic Wildlife
Project's Primary Contact Information
Name Pope, Kevin
Unit Nebraska Cooperative Fish and Wildlife Research Unit
Email kpope2@unl.edu
Phone 402-472-7028
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=759
Project Information
Title Population Assessment of Channel Catfish in Nebraska
Other(s) Lindsey Chizinski, Graduate Assistant 
Description

Channel catfish (Ictalurus punctatus) is an important sport fish, particularly in the Great Plains. In Nebraska, a majority of anglers target channel catfish, and fishing activities are a vital part of the state’s economy. Lentic water bodies provide the primary fishing opportunity for catfish anglers in Nebraska. Despite the popularity and economic importance of channel catfish, little is known of its population dynamics or habitat requirements, and existing studies often profile river populations.

Current standards for sampling channel catfish in lentic systems often yield inadequate catch to assess populations. The objective of this study was to utilize a recently developed sampling method, tandem-set hoop nets, to collect channel catfish in sufficient quantities to describe the effects of stocking and habitat variability on populations in lentic ecosystems. Three lentic ecosystems common to the Great Plains were considered: sand pits, flood-control reservoirs, and irrigation/power-generation reservoirs.

The influence of stocking on abundance and condition of channel catfish varied with ecosystem type. In sand pits, stocking negatively influenced fish condition, and only stocking on an annual basis positively influenced abundance. In flood-control reservoirs, stocking did not influence fish condition, but was associated with greater abundance. In irrigation/power-generation reservoirs, stocking did not influence fish condition or abundance. Additionally, there was evidence that mortality and growth rates varied with ecosystem type. In general, channel catfish from irrigation/power-generation reservoirs were predicted to experience slower growth and lower mortality, whereas channel catfish from sand pits were predicted to experience the fastest growth and highest mortality.

Catch rates of channel catfish were substantially less in this study compared to previous records of tandem-set hoop net surveys, but hoop nets were more efficient than the current standard gear, experimental gill nets, at capturing channel catfish. That is, 100 channel catfish could be captured with fewer sets of hoop nets than gill nets. However, catch rates and size structure of channel catfish in tandem-set hoop nets varied within the sampling season and between years. Furthermore, length-frequency distributions of channel catfish were dissimilar between hoop nets and gill nets.

Click here to read Lindsey Chizinski's Master's Thesis on Channel Catfish Population in Nebraska

Project Support Nebraska Game and Parks Commission
Project Website http://snr.unl.edu/necoopunit/research.main.html#channel_catfish
Report
Current Status Completed
Topic Wildlife
Project's Primary Contact Information
Name Young, Chelsey
Unit Biology, UNK
Email youngca2@unk.edu
Phone 507-469-8284
Web Page
Project Information
Title A range-wide assessment of plains topminnow (Fundulus sciadicus) distribution and potential threats
Other(s) W. Wyatt Hoback, Biology UNK, hobackww@unk.edu; Keith Koupal, Biology UNK; Justin Haas 
Description The plains topminnow, Fundulus sciadicus, was once distributed from the Mississippi River to the Rocky Mountains, north to South Dakota and as far south as Oklahoma. Two centers of distribution are recognized. One is centered in Nebraska and the second is centered in Missouri. The geographic range of plains topminnow has decreased in the past decades. Plains topminnow are now considered a species of special concern in the state of Nebraska and listed as a Tier 1 species in the Nebraska Natural Legacy Project. Elimination of plains topminnow populations has been associated with introduction of invasive species, as well as loss of backwater habitats due to drought and lowered water tables. The objective of this project is to provide an updated assessment of plains topminnow distribution and population status as compared to all available historical records. Between 2004 and the present, sampling of plains topminnow revealed that in Nebraska 77% of historic Nebraska sites no longer contain plains topminnow populations. The sampling of remaining historic sites in Nebraska and neighboring states will continue in the 2009 sampling season.
Project Support n/a
Project Website
Report topminnow_range_reduction.pdf
Current Status Completed