NU Water-Related Research in District 41

The list below shows water-related research being conducted within your district or that affects your district. They are sorted by water topic, then by primary contact's last name.

Displaying 39 records found for District 41


Topic Climate
Project's Primary Contact Information
Name Shulski, Martha
Unit High Plains Regional Climate Center
Email mshulski3@unl.edu
Phone 402-472-6711
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=474
Project Information
Title High Plains Regional Climate Center - Monitoring Stations
Description

As the demand for water grows, it is important to have reliable information for various assessments, such as drought, fire, and water development. In an effort to understand the surface hydrology and the water and energy interactions at the surface, scientists with the High Plains Regional Climate Center have installed a series of monitoring stations that collect temperature, humidity, solar radiation, windspeed and direction, soil temperature, precipitation and soil moisture data. These stations take hourly and daily data which can be used to calculate evapotranspiration and water balance terms. Monitoring equipment is located near Higgins Ranch, Sparks, Merritt, Ainsworth, New Port, Barta, Gudmundsens, Halsey, and Merna.

Volunteers supplement these stations by using rain gauges to monitor precipitation; volunteers enter their data online as part of the Nebraska Rainfall Assessment and Information Network (NeRAIN). In total volunteers from 40 states contribute precipitation data to the Community Collaborative Rain, Hail and Snow Network (CoCoRaHS). The CoCoRaHS network has been incorporated into the Applied Climate Information System (ACIS), which allows resource managers, researchers, and decision-makers to better access data.

Project Support National Climatic Data Center
Project Website http://hprcc.unl.edu
Report
Current Status Continuing
Topic Crop Nutrient Use
Project's Primary Contact Information
Name Wortmann, Charles
Unit Agronomy and Horticulture
Email cwortmann2@unl.edu
Phone 402-472-2909
Web Page http://agronomy.unl.edu/wortmann
Project Information
Title Nitrogen Use Efficiency of Irrigated Corn for Three Cropping Systems in Nebraska
Other(s) Charles Shapiro, Agronomy & Horticulture, cshapiro@unl.edu; Richard Ferguson, Agronomy & Horticulture, rferguson1@unl.edu; Gary Hergert, Panhandle Research & Extension Center, ghergert1@unl.edu 
Description

Overview Nitrogen fertilizer will continue to be indispensible for meeting global food, feed, and fiber needs. Voroneyand Derry (2008) estimated that 340 million Mg yr-1 N is fixed by natural means, including lightning and biological N fixation, and 105 million Mg yr-1 is fixed by human activities, including burning of fossil fuels and N fertilizer production, with N fixation by human activities expected to continue to increase. Townsend and Howarth (2010) estimated the amount of N fixed by human activities to be about 180 million Mg yr-1, with most used as mineral fertilizer. Fertilizer N production has important environmental implications with an average of ~2.55 kg CO2 emitted per kg fertilizer N fixed and transported (Liska et al., 2009). Th e amount of N applied is associated with emission of N2O (IPCC–OECD, 1997) and N accumulation in sensitive aquatic, marine, and terrestrial ecosystems (Groffman, 2008; Malakoff , 1998). Th e challenge is to produce more grain to meet growing global needs with high NUE.

Conclusions Across diverse production environments, high corn yields can be achieved with efficient use of soil and applied N and without high risk of NO3 -N leaching to groundwater. With excellent farm management, recovery of applied fertilizer-N in high-yielding corn fields of Nebraska was well above 60 to 70% at the economically optimal nitrogen rate (EONR), resulting in low residual soil nitrate nitrogen (RSN) levels. Agronomic efficiency and crop partial factor productivity (PFP), the Nitrogen use efficiency (NUE) components most closely related to profitability of production, can also be high at EONR. Less preplant and more in-season N application may be especially important for drybean (CD) which had low recovery efficiency (RE) and much postharvest RSN compared with corn (CC) and soybean (CS). The levels of NUE achieved in our study for CC and CS far exceed current national or regional means, demonstrating the potential for high NUE with high yield corn production. Further NUE efficiency may be gained through more accurate in-season N application such as with use of the presidedress NO3 test (Andraski and Bundy, 2002) and spatial variation in N rate in response to variation in crop need, such as through use of reflectance sensors (Scharf and Lory, 2009; Barker and Sawyer, 2010; Roberts et al., 2010).

Project Support Nebraska State Legislature, Nebraska Agricultural Business Association
Project Website
Report Wortmann_NUE.pdf
Current Status Completed
Topic Crop Water Use
Project's Primary Contact Information
Name Cassman, Ken
Unit Agronomy and Horticulture
Email kcassman1@unl.edu
Phone 402-472-5554
Web Page http://agronomy.unl.edu/cassman
Project Information
Title Real-time Decision Support System for Deficit Irrigation - Hybrid-Maize
Other(s)  
Description

Hybrid-Maize is a computer program that simulates the growth of a corn crop under non-limiting or water-limited (rainfed or irrigated) conditions based on daily weather data. Specifically, it allows the user to:

  • assess the overall site yield potential and its variability based on historical weather data
  • evaluate changes in attainable yield using different combinations of planting date, hybrid maturity, and plant density
  • explore options for optimal irrigation management
  • conduct in-season simulations to evaluate actual growth up to the current date based on real-time weather data, and to forecast final yield scenarios based on historical weather data for the remainder of the growing season

Hybrid-Maize does NOT allow assessment of different options for nutrient management nor does it account for yield losses due to weeds, insects, diseases, lodging, and other stresses. Hybrid-Maize has been evaluated primarily in rainfed and irrigated maize systems of the U.S. Corn Belt. Caution should be exercised when applying this model to other environments as this may require changes in some of the default model parameters.

This project will develop a similar tool for irrigation scheduling for Nebraska soybean producers, and a real-time decision support system for deficit irrigation on corn, both based upon the Hybrid-Maize model. These tools will assist producers who have limited irrigation water supplies to optimize irrigation scheduling in real time for maximum yields, in particular during water-short years.

Project Support Nebraska Natural Resources Conservation Service, Nebraska Soybean Board
Project Website http://hybridmaize.unl.edu/
Report
Current Status Continuing - Software Available
Topic Crop Water Use
Project's Primary Contact Information
Name Irmak, Suat
Unit Biological Systems Engineering
Email sirmak2@unl.edu
Phone 402-472-4865
Web Page http://bse.unl.edu/sirmak2
Project Information
Title A Decision Support Tool to Increase Energy and Crop Water Use Efficiency for Corn and Soybean Production
Description

Energy costs coupled with limitations in water availability are threatening the sustainability of irrigation in the state. Energy costs for irrigation rose almost 100 percent for typical Nebraska irrigators from the spring of 2003 to the summer of 2006 and continue to rise sharply. The rising cost of fuel and the limited availability of water make producing maximum crop yield with minimal input imperative.

Nebraska growers need scientifically based and practical management strategies that can aid them in their decision-making process to enhance crop water-use efficiency and reduce energy use to achieve maximum profitability. Growers are looking for answers on how to make a maximum use of limited irrigation water and how to manage irrigation water to reduce pumping cost.

Crop simulation models with the capability of "real-time" assessment of crop and soil water status and yield prediction based on historical climate data represent a powerful new tool to help improve irrigation decisions and increase water-use efficiency especially for situations where the amount of available water supply is less than the full requirement for maximum crop yield. This project validates and demonstrates a decision-support tool for a real-time irrigation scheduling period, and releases the new tool as a software program for use by crop producers, crop consultants, and industry professionals. This tool will be used to assess energy requirement for different irrigation regimes to aid growers and state and federal agencies to make better-informed management decisions.

Project Support Upper Big Blue Natural Resources District, Gard Fund
Project Website
Report
Current Status Underway
Topic Crop Water Use
Project's Primary Contact Information
Name Irmak, Suat
Unit Biological Systems Engineering
Email sirmak2@unl.edu
Phone 402-472-4865
Web Page http://bse.unl.edu/sirmak2
Project Information
Title Nebraska Agricultural Water Management Demonstration Network
Other(s) Gary Zoubek, York County Extension, gzoubek@unl.edu 
Description

The Nebraska Agricultural Water Management Demonstration Network (NAWMDN) encourages the adoption of newer technologies that will enable farmers to use water and energy resources associated with irrigated crop production efficiently. NAWMDN launched in 2005 and started with 20 growers from south central Nebraska who joined the Network as collaborators. In 2008 an online tool named ETgage was added to enable participation by growers throughout Nebraska.

The NAWMDN ETgage project is one part of a system for testing cutting-edge technologies and creating a network with growers, UNL Extension, NRDs, NRCS, and crop consultants, and other interested partners, that will enable the adoption of water and energy conservation practices. The simplicity of the use and interpretation of the ETgage data, as well as its economic feasibility, makes it easy for farmers to monitor crop water use for effective irrigation management. In this project ETgages are used to estimate crop water use, and Watermark sensors are used to measure soil moisture to determine irrigation timing and amount. Each year, NAWMDN team members organize educational meetings during the growing season and over the winter to implement the project, teach participants how to use the ETgage and Watermark sensors for irrigation management, review the results, set goals, and obtain grower feedback. This project has been reported at local, regional, and national meetings.

In 2005, there were 18 demonstration sites. Some of the ETgage and Watermark sensors were read by growers and some were read weekly by Network core members. In 2006, the second year of the project, there were more than 50 demonstration sites. In 2007 more than 125 cooperators in nine NRDs and 22 counties were involved. In the fall of 2007, 89 producers involved in the NAWMDN were surveyed; of those 56% responding, the estimated corn water savings varied from 0-7.5" with an average savings of 2.6," while soybeans water savings varied from 0-4.8" with an average of 2.1." Using 2007 diesel prices, this resulted in total energy savings of $2,808,000 and $2,269,800 for corn or soybeans over 117,000 acres.

In 2008 over 300 active participants from 25 counties in 9 of Nebraska's 23 NRDs. An interactive web site was also created to inform growers and other clients about the network and to educate producers and industry professionals about using these two tools along with crop stage of growth information to make irrigation management decisions. This interactive web site has engaged the cooperating producers and enhanced learning. The site consists of a map of Nebraska's 93 counties on which producers can select specific counties to find a Google gps map with ETgauge locations marked. Producers can click on specific sites to see the weekly reference evapoptranspiration (ET) reported by producers. The site also includes information about the NAWMDN and how to use the various tools.

For detailed information, see Nebraska Agricultural Water Management Demonstration Network: Integrating Research and Extension/Outreach.

Project Support Partners include personnel from 19 extension offices, the Little Blue NRD, the Upper Big Blue NRD, Nebraska Association of Resources Districts, Nebraska Natural Resources Conservation Service, South Central Agricultural Laboratory, and the Central Nebraska Public Power and Irrigation District.
Project Website http://water.unl.edu/cropswater/nawmdn
Report
Current Status Continuing
Topic Crop Water Use
Project's Primary Contact Information
Name Kranz, Bill
Unit Northeast Research and Extension Center
Email wkranz1@unl.edu
Phone 402-584-3857
Web Page http://bse.unl.edu/web/bse/wkranz1
Project Information
Title Developing Irrigation Management Module of the Hybrid-Maize Corn Growth Model
Other(s) Charles Shapiro, Northeast Research and Extension Center, cshapiro1@unl.edu; Suat Irmak, Biological Systems Engineering, sirmak2@unl.edu; Ken Cassman, Center for Energy Sciences and Research, kcassman1@unl.edu 
Description

A test site about 9 miles southwest of Ord and another site near West Point are being used to calibrate the Hybrid-Maize corn growth model for use in making recommendations for irrigation water applications when water supplies are insufficient to meet local crop water demands. At these locations center pivots are being managed to apply full crop needs on 1/4 and 75% of crop water use on another 1/4 of the system. Weather station data near Ord and soil water content from the field site are being used to help schedule the irrigation. Grain yield, soil water readings, and the producer's recordings of irrigation water applications are being used to document the model predictions. Researchers are collecting crop growth, dry matter production, and grain yield data.

Project Support Nebraska Natural Resources Conservation Service
Project Website
Report
Current Status Completed
Topic Crop Water Use
Project's Primary Contact Information
Name Martin, Derrel
Unit Biological Systems Engineering
Email dmartin1@unl.edu
Phone 402-472-1586
Web Page http://bse.unl.edu/dmartin2
Project Information
Title Enhancing Irrigation Management Tools and Developing a Decision System for Managing Limited Irrigation Supplies - Enhancing The Water Optimizer
Other(s) Chris Thompson, Agricultural Economics, cthompson2@unl.edu; Paul Burgener, Panhandle Research and Extension Center, pburgener2@unl.edu; Ray Supalla, Agricultural Economics, rsupalla1@unl.edu; Gary Hergert, Panhandle Research and Extension Center, ghergert1@unl.edu 
Description

The Water Optimizer is a computer model developed in response to several years of drought across the state and to farmers facing water restrictions. The model can be used by producers to evaluate management options when water is limiting due to drought or regulations; it can also be used by water planners or policy makers who wish to estimate the farm-level economic consequences of retiring acres or regulating the water supply. Released by UNL in 2005, the model is available for all counties in Nebraska to evaluate single fields for several crop options. Irrigated crops include: corn, soybeans, sorghum, wheat, alfalfa, edible beans and sunflowers. Dryland crops include: corn, soybeans, sorghum, sunflowers, alfalfa and wheat in continuous, summer fallow and eco-fallow rotations. Producers put information into a Microsoft Excel spreadsheet, including soil type and irrigation system options. Irrigation options include center pivot or gravity irrigation systems, well or canal delivery, and systems powered by electricity, diesel or natural gas. After entering this basic information, producers enter their production costs, irrigation costs, crop prices, crop type and available water. After these parameters have been set, the program calculates what crops will be most profitable with the given costs and available water. This gives the producer a "whole farm view" in considering how to manage available water supplies.

While the Water Optimizer is useful, it is limited in that it considers economic choices and consequences one field (well) and one year at a time. Three different departments (Agronomy-Horticulture, Agricultural Economics and Biological Systems Engineering) will combine their expertise to develop information to enhance Water Optimizer by: 1) improving the tool's function for crops grown in the semiarid High Plains, including canola, camelina, chickpeas, dry beans and sunflowers; 2) expanding the tool's geographic coverage area to additional counties in Nebraska including irrigated areas in Colorado and Kansas; 3) developing the capability to evaluate risk-management alternatives on a whole-farm basis as well as field by field; and 4) developing the capability to determine the best strategies for managing multi-year water allocations. The benefits of this project will be to maintain profitability and sustain farming enterprises with a limited irrigation supply. The goal is to conduct educational programming in conjunction with the project to encourage other producers to implement practices and concepts demonstrated in this project. An additional outcome will be transferring this information to other areas of declining ground water or surface water.

The Water Optimizer tool was developed to assist in addressing water shortages created by drought and interstate water rights litigation. The current model released November 2010, supports all 93 Nebraska counties.

Project Support U.S. Department of Agriculture Risk Management Agency
Project Website http://agecon.unl.edu/wateroptimizer
Report
Current Status Underway
Topic Extension
Project's Primary Contact Information
Name Kranz, Bill
Unit Northeast Research and Extension Center
Email wkranz1@unl.edu
Phone 402-475-3857
Web Page
Project Information
Title Northeast Research and Extension Center - Haskell Agricultural Laboratory
Other(s) Charles Shapiro, Northeast Research and Extension Center, cshapiro1@unl.edu; Dave Shelton, Northeast Research and Extension Center, dshelton2@unl.edu; Sue Lackey, Conservation and Survey, slackey1@unl.edu; Terry Mader, Haskell Ag. Lab, tmader1@unl.edu 
Description

The role of the faculty and staff in this unit is to prevent or solve problems using research based information. Faculty and staff subscribe to the notion that their programs should be high quality, ecologically sound, economically viable, socially responsible and scientifically appropriate. Learning experiences can be customized to meet the needs of a wide range of business, commodity, or governmental organizations based upon the many subject matter disciplines represented. As part of the University of Nebraska, the Northeast Center faculty and staff consider themselves to be the front door to the University in northeast Nebraska. Through well targeted training backgrounds and continuous updating via the internet and other telecommunications technologies, faculty and staff have the most current information available to help their clientele.

The Haskell Ag. Lab is a University of Nebraska research farm located 1.5 miles east of the Dixon County Fairgrounds in Concord. This 320 acre farm was donated to the University of Nebraska by the C.D. Haskell family of Laurel in 1956. A number of demonstrations and projects are going on at the Haskell Ag. Lab, including a riparian buffer strip demonstration and a study to evaluate the effect of irrigation on soybean aphid population dynamics. Other studies focus on:

Subsurface Drip Irrigation: In the spring of 2007 a new subsurface drip irrigation system was installed on a 4 acre portion of the farm with sandy loam soils. The initial objective of the research is to collect field data to document crop water use rates for new corn varieties. Specifically, the work will concentrate on varieties that have different drought resistance ratings to improve the accuracy of the information provided to producers via the High Plains Regional Climate Center. In 2007, two varieties were planted and five irrigation treatments were imposed ranging from dryland to full irrigation. The data will also be used to develop improved local crop production functions for use in the Water Optimizer spreadsheet.

Hormones in Livestock Waste: This project will evaluate the fate of both naturally occurring and synthetic hormones that are associated with solid waste harvested from beef cattle feeding facilities. The research involves: 1) tracking the fate of hormonal compounds from the feedlot into surface run-off that would make its way into a liquid storage lagoon; 2) establishing stockpiled and composted sources of the solid manure removed from the feedlot; and 3) applying stockpiled and composted manure to cropland areas under different tillage systems and native grasses. Once the manure is applied the runoff potential will be evaluated using a rainfall simulator. Research will then focus on whether plants that could be a source of food for wildlife and/or domestic animals take up the hormones. (More information about this project is available; see projects listed under Dan Snow.)

Project Support Varies according to program and project - for more information see http://nerec.unl.edu/ Hormone Project funded by the U.S. Environmental Protection Agency
Project Website http://nerec.unl.edu/
Report
Current Status Continuous
Topic Extension
Project's Primary Contact Information
Name Kranz, Bill
Unit Northeast Research and Extension Center
Email wkranz1@unl.edu
Phone 402-584-3857
Web Page http://bse.unl.edu/web/bse/wkranz1
Project Information
Title Demonstration Projects and Field Tours
Other(s) Charles Shapiro, Northeast Research and Extension Center, cshapiro1@unl.edu. 
Description

A project associated with using beef manure compost on sandy soils is being conducted near Pierce and Plainview as a means of improving soil quality, using a beef production by-product in crop production and reducing commercial fertilizer application. The data collected at these two sites has been presented by Charles Shapiro at several educational meetings across northeast Nebraska. The project shows a slight improvement is some parameters, but the cost of transportation reduces the quantity of compost that can be transported and so the effect on soil physical properties is minimal, although soil phosphorus levels are increasing.

Near Pierce a project funded by the Lower Elkhorn Natural Resources District aims to demonstrate the impact of reducing season long water application by 10% on corn yield. At this site the farmer uses a computer control panel to speed up or slow down his center pivot automatically to apply 10% less or 10% more than his normal application, respectively. Nitrogen is being applied at three different rates to demonstrate the adequacy of the UNL Calculation Procedure.

Near Brunswick a project funded by the Upper Elkhorn Natural Resources District aims to develop improved nitrogen credit following soybeans in a corn-soybean rotation. Six nitrogen treatments and 6 different cropping sequences have been imposed to determine the nitrogen credit from soybeans on sandy soils. This project will run through the 2008 growing season. To date data suggests lower nitrogen credits on the sands than the silt loam soils in eastern Nebraska.

Project Support Lower Elkhorn Natural Resources District, Upper Elkhorn Natural Resources District
Project Website
Report
Current Status Continuous
Topic Groundwater
Project's Primary Contact Information
Name Perera-Estrada, Hugo
Unit Agronomy and Horticulture
Email hpereaestrada2@unl.edu
Phone 402-472-6085
Web Page
Project Information
Title Modeling Groundwater Nitrate Transport Beneath a Ground Water Quality Management Area in the Central Platte Region of Nebraska
Other(s) Mary E. Exner, School of Natural Resources, mspalding1@unl.edu; Roy Spalding, Agronomy and Horticulture, rspalding1@unl.edu 
Description A Ground Water Quality Management Area (GWQMA) is being evaluated to determine the effectiveness of producer practices in reducing high nitrate levels that result from excessive N-fertilizer and irrigation water applications. The assessment of nitrate movement in the primary and secondary aquifer relies on simulating groundwater flow and contaminant transport beneath the 588 km2 Phase III GWQMA. The Platte River is in hydraulic connection with the aquifer and forms the southern boundary of the model. The northern boundary parallels the northern edge of the GWQMA. Hydraulic conductivities from test hole data, irrigation well pedigree information and nitrate concentrations from 1988 to 2003 were input to a 3-D groundwater finite difference model. A Neumann or second-type boundary condition was established for the northern and southern model boundaries. Prescribed heads (Dirichlet-type boundary condition) were imposed on the upgradient and downgradient sides of the GWQMA. The thicknesses of the primary (upper) and secondary aquifers are somewhat variable in the investigated area as are hydraulic conductivities in the secondary aquifer. The groundwater model was calibrated in the steady-state mode with hydraulic head data from 1988 to 2003. The flow path and travel times within the study area result in an approximate evaluation of the susceptibility to nitrate contamination with transport. Results are described in 2-D and 3-D graphical visualizations. Hydraulic head and water quality data from adjacent monitoring wells screened in either the primary or secondary aquifers were used to quantify nitrate transport between the aquifers.
Project Support n/a
Project Website http://www.usawaterquality.org/conferences/2009/PDF/CEAP-all/Perera-Estrada09.pdf
Report
Current Status Completed
Topic Groundwater
Project's Primary Contact Information
Name Spalding, Mary Exner
Unit School of Natural Resources
Email mspalding1@unl.edu
Phone 402-472-7547
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=111
Project Information
Title Evaluation of the Effectiveness of Selected Farm Practices in Reducing Groundwater Nitrate
Other(s) Hugo Perera-Estrada, Agronomy and Horticulture, hpereaestrada2@unl.edu; Megan L. Liedte, Statistics; Roy Spalding, Agronomy and Horticulture, rspalding1@unl.edu 
Description Data from 25,961 producer reports and 1,935 irrigation wells were used to assess the effectiveness of management practices within 588 km2 of intensely irrigated corn production in the Platte River drainage in central Nebraska. The area has been regulated as a Phase III Ground Water Quality Management Area by the local Natural Resources District (NRD) for 19 years. The initial spatial analysis of the 1987 groundwater nitrate concentrations revealed an obvious concentration demarcation. Concentrations in the very contaminated northern area averaged 25.7 mg NO3-N/L while those in the southern portion averaged 9.4 mg NO3-N/L. Groundwater nitrate concentrations in the north are significantly correlated with time (r2 = 0.87) and decreased at an average annual rate of 0.24 mg NO3-N/L between 1987 and 2005. No significant concentration trend occurred in the southern area. During the 19 years the amount of N removed in grain increased at an average annual rate of 2 kg N/ha. In the north the association between the increase in N removed in grain and decrease in groundwater NO3-N concentrations is significant. The acreage converted from furrow to sprinkler irrigation increased threefold between 1988 and 2003. In the north the increase in sprinkler-irrigated acres is associated with the decrease in groundwater NO3-N concentrations. The NRD- recommended N-fertilizer rate for each corn field in the Phase III area is based upon a realistic yield goal and NRD-modified university N-fertilizer recommendation with credits for residual soil N and N available in irrigation water. From 1988 to 2003 N-fertilizer rates on 62 to 88% of the fields were within ± 56 kg N/ha (50 lb N/ha) of the NRD recommendation. The remaining fields were more likely to be fertilized at rates greater than 56 kg N/ha in excess of the recommendation than receive N at rates more than 56 kg N/ha below the NRD recommendation.
Project Support n/a
Project Website http://www.usawaterquality.org/conferences/2009/PDF/CEAP-all/Exner09.pdf
Report
Current Status Completed
Topic Hydrology
Project's Primary Contact Information
Name Chen, Xun-Hong
Unit School of Natural Resources
Email xchen2@unl.edu
Phone 402-472-0772
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=19
Project Information
Title Hydrologic Connections in the Central Platte River Basin
Other(s) Mark E. Burbach, Conservation and Survey Division, mburbach1@unl.edu; Cheng Cheng, School of Natural Resources, ccheng2@unl.edu 
Description

The hydrologic properties of channel sediments have an important role in controlling hydrologic process in streams. This study focused on the water exchange between a stream and an aquifer induced by groundwater withdrawal, with the purpose of investigating the interbedded feature of channel sediments and to evaluate its effects on the calculation of streamflow depletion. Field work was conducted at nine study sites between Kearney and Columbus during the summers of 2005 and 2006. Direct-push techniques were used to produce electrical conductivity logs and to collect sediment cores. Permeameter tests were conducted on the sediment cores. Stream-aquifer simulation models were used to evaluate streamflow depletion for various types of channel sediments.

Sediment core samples were categorized into four groups:

  • sand and gravel,
  • sand and gravel with interbedded silt and clay layers,
  • fine sand with silt or clay layers, and
  • silt and clay with some sand and gravel.

In general coarse sediments occur in the western part of the study area, and the amount of fine sand, silt and clay increases eastward along the river. However, the sediments in the top two meters are about the same for all the sites, consisting mainly of sand and gravel.

Project Support Central Platte Natural Resources District, Upper Big Blue Natural Resources District, U.S. Geological Survey (through the University of Nebraska-Lincoln Water Center), U.S. Environmental Protection Agency
Project Website
Report Chen Hydrologic Connections.pdf
Current Status Published in Journal of Hydrology 2008 352:250-266
Topic Hydrology
Project's Primary Contact Information
Name Cheng, Cheng
Unit School of Natural Resources
Email ccheng2@unl.edu
Phone 402-472 0772
Web Page http://snr.unl.edu/aboutus/who/people/graduatestudent-member.asp?pid=798
Project Information
Title Statistical Distribution of Streambed Vertical Hydraulic Conductivity along the Platte River, Nebraska
Other(s) Xun-Hong Chen, School of Natural Resources, xchen2@unl.edu, Jinxi Song, Deming Wang 
Description Streambed vertical hydraulic conductivity (Kv) plays an important role in understanding and quantifying the stream-aquifer interactions. While several researchers have discussed the spatial variability of streambed horizontal hydraulic conductivity or Kv at one or several close-located sites in a river, they did not develop any statistical distribution analysis of streambed Kv at distant sites along a large river. In this paper, the statistical distribution and spatial variation of streambed Kv at 18 test sites in a 300-km reach of the Platte River in Nebraska are presented. Insitu permeameter tests using the falling-head method were carried out to calculate the streambed Kv values. Fine-grained sediments transported by two tributaries, the Loup River and the Elkhorn River, to the Platte River appear to result in lower streambed Kv values downstream of the confluences between the Platte River and the tributaries. The streambed Kv values were found to be normally distributed at nearly each test site. When the correlated Kv values were eliminated from the grid sampling plots, the remaining independent sub-datasets of streambed Kv values were still in normal distribution at each test site. Furthermore, the combined streambed Kv values upstream of the first confluence between the Platte River and the Loup River was normally distributed, which may be due to the lack of tributaries in-between and thus streambed sediments were well distributed in this reach and belonged to a single population of hydraulic conductivity values. In contrast, the combined dataset of all measurements conducted downstream of this confluence was no longer in normal distribution, presumably as a result of the mixing of different sediment sources.
Project Support Lower Platte North Natural Resources District, Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China
Project Website
Report Cheng_Distribution.pdf
Current Status Published in Water Resources Management DOI 10.1007/s11269-010-9698-5
Topic Hydrology
Project's Primary Contact Information
Name Lenters, John
Unit School of Natural Resources
Email jlenters2@unl.edu
Phone 402-472-9044
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=743
Project Information
Title On Basin Residence Time and Annual Hydrology: Development of Annual Hydrology Model of the Sandhills Rivers
Other(s) Erkan Istanbulluoglu, University of Washington, erkani@u.washington.edu; Durelle Scott, Virginia Tech, dscott@vt.edu; Tiejun Wang, University of Washington-Seattle, tjwang@u.washington.edu 
Description

Simple models of annual and mean annual basin runoff and evapotranspration, such as the one proposed by Budyko, are useful for investigating the relationship between river flow and climate, and planning water storage structures in basins where long term streamflow measurements are not available. Such models are often based on the assumption that annual precipitation is in balance with annual runoff and evapotranspiration, and change in water storage of the basin is negligible. In basins where groundwater is the dominant source of streamflow this assumption hardly holds.

In this study first we develop a technique to investigate groundwater residence time to identify time scales over which a simple model of mean annual runoff can be meaningfully used. The model is applied in the Niobrara and Loup Rivers. Second we develop an annual hydrology model by solving the rate of change in basin storage. The runoff component of the model is based on the well-known linear reservoir model and a parameterization to characterize runoff on saturated areas. River water storages and streamflow diverted for irrigation are included as inputs in the model. The model explained as high as 80% of the annual variability of runoff in the Niobrara River at the Sparks gage. The model underscores the importance of saturation overland flow in the basin. Finally we used the model to investigate climate change scenarios, including extreme dry and wet conditions, as well as scenarios for the Medieval Warm Period during which Sandhills were destabilized as suggested by geological evidence.

Project presentation at the 2008 Water Colloquium

Project Support National Science Foundation
Project Website
Report Lenters_Groundwater.pdf
Current Status Published "On the role of groundwater and soil texture in the regional water balance: An investigation of the Nebraska Sand Hills", USA, Water Resour. Res., 45, W10413, doi:10.1029/2009WR007733.
Topic Hydrology
Project's Primary Contact Information
Name Pederson, Darryll
Unit Earth and Atmospheric Sciences
Email dpederson2@unl.edu
Phone 402-472-7563
Web Page http://eas.unl.edu/people/faculty_page.php?lastname=Pederson&firstname=Darryll&type=REG
Project Information
Title Waterfalls on the Niobrara River's Spring-fed Tributaries
Description The waterfalls on the spring-fed tributaries of the Niobrara River downstream from Valentine, Nebraska are unique in that the waterfalls are convex downstream. Groundwater discharge on either side of the waterfalls has led to significant weathering because of freeze/thaw cycles in the winter and wet/dry cycles in the summer. The water falling over the face of the falls protects them from the two weathering processes. Because the weathering rates on either side are higher than the erosion rates from falling water, the face of the falls is convex downstream. Similar waterfall face morphology occurs on the Island of Kauai where the main weathering processes are driven by vegetation and the presence of water.
Project Support National Park Service through the Great Plains Cooperative Ecosystem Studies Unit
Project Website http://snr.unl.edu/gpcesu/Project_library.htm
Report Waterfalls_Abstract.pdf
Current Status Completed
Topic Hydrology
Project's Primary Contact Information
Name Rundquist, Donald
Unit Center for Advanced Land Management Information Technologies
Email drundquist1@unl.edu
Phone 402-472-7536
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=103
Project Information
Title Nebraska Airborne Remote Sensing Program
Other(s) Rick Perk, CHAMP Project Manager, rperk1@unl.edu; Anatoly Gitelson, gitelson@calmit.unl.edu; Sunil Narumalani, sunil@calmit.unl.edu; Merlin Lawson, mlawson@calmit.unl.edu 
Description

CALMIT has joined forces with the UNL Department of Electrical Engineering and the UNO Aviation Institute to develop an aerial remote sensing research platform known as the Nebraska Airborne Remote Sensing Program (NARSP). A specially modified Piper Saratoga aircraft is being used as the base platform for deployment of a number of research grade remote sensing instruments. CALMIT's airborne remote sensing activities are centered around a suite of instruments associated with an AISA Eagle hyperspectral imaging system. This specific program is identified as CALMIT Hyperspectral Aerial Monitoring Program (CHAMP).

This technology has contributed to several projects:

  • To determine the condition and monitor the changing quality of Nebraska's 2500+ lakes and ponds - funded by the Nebraska Department of Environmental Quality and the U.S. Environmental Protection Agency.
  • To conduct a retrospective assessment of several different remote sensing platforms, with an emphasis on those remote sensing methods (e.g., airborne, Landsat, MODIS and MERIS) that most likely can be used for monitoring lakes routinely and operationally over a regional spatial extent - in collaboration with the North American Lake Management Society and the Universities of Minnesota and Wisconsin
  • To conduct remote sensing of coral communities.
  • To identify and delineate areas of noxious weeds and invasive species by using satellite imagery, hyperspectral aerial imagery, and GPS technology to aid in inventory surveys and mapping of these areas and assess the effectiveness of ongoing weed management actions.
  • To use airborne and satellite remote sensing systems to investigate and improve approaches to managing wheat streak mosaic (WSM), the most severe disease of winter wheat in the Great Plains.
Project Support Platform Development - National Science Foundation, National Aeronautics and Space Administration; specific project support noted above when possible.
Project Website calmit.unl.edu/champ/index.php
Report
Current Status Continuous
Topic Hydrology
Project's Primary Contact Information
Name Wang, Tiejun
Unit School of Natural Resources
Email tiejunwang215@yahoo.com
Phone
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=945
Project Information
Title Niobrara River Flow Variability
Other(s) Erkan Istanbulluoglu, University of Washington, erkani@u.washington.edu 
Description This project develops a database for hydrological and climatological variables within the Niobrara River basin so that researchers may study flow variability in the Niobrara River and its historical changes. Analysis includes all existing and discontinued streamflow gages within the system. Surface water diversion data are also collected to relate to changes in the flow discharge. Annual water yield of the river is studied at Sparks and Verdel gages. A lumped annual water yield model is developed to identify the natural variables that control runoff. The model uses annual runoff as forcing variable, as well as water diversions as outflux from the system. The model is currently being extended to monthly time scales.
Project Support Nebraska Game and Parks Commission, National Park Service
Project Website
Report
Current Status Underway
Topic Invasive Species
Project's Primary Contact Information
Name Allen, Craig
Unit Nebraska Cooperative Fish and Wildlife Research Unit
Email callen3@unl.edu
Phone 402-472-0229
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=647
Project Information
Title Monitoring, Mapping and Risk Assessment for Non-Indigenous Invasive Species in Nebraska
Other(s) Karie Decker, Nebraska Invasive Species Project Coordinator, invasives@unl.edu 
Description

Biological invasions are a growing threat to both human enterprise and ecological systems. This project provides resources to the public and private sector on: 1) the potential spread and impact of non-indigenous species in Nebraska; 2) actual and potential maps of non-indigenous species range (habitat specific maps at high resolution); 3) information regarding identification and management of potential invaders; 4) centralized information on management and impacts and potential spread of currently established non-indigenous species (a web portal); and 5) outreach within Nebraska to county-level governments and individual stakeholders regarding the management, surveillance and control of non-indigenous species. On February 7-8, 2008 a conference on non-indigenous species impacts, spread and management was held, focusing on state-of-our-knowledge and coordination of disparate management and information-provisioning efforts with a goal towards unification of disparate efforts.

This project is meant to build momentum towards a cohesive non-indigenous species biosecurity and management system in Nebraska that is integrated and relatively seamless across institutional boundaries. Spatially - based risk assessments that focus on non-indigenous invasive species impacts on at - risk native species and communities in Nebraska have been initiated with funding from the U.S. Geological Survey and the Nebraska Game and Parks Commission. The results and predictive models generated by this project will be delivered and made widely available to policy makers, management practitioners and landowners in Nebraska. Additional general information about potential invasive species and their impacts will be made easily accessible. Most of the goals listed above will produce and disseminate products that are dynamic, with interactive elements for the public and managers, including mapping of habitat-specific current and potential distributions of invasive species as well as a portal through which the public can inform the entities responsible for management of invasive species occurrence and spread - and vice versa.

Project Support U.S. Geological Survey, Nebraska Game and Parks Commission, Nebraska Environmental Trust
Project Website http://snr.unl.edu/invasives
Report
Current Status Continuing
Topic Invasive Species
Project's Primary Contact Information
Name Allen, Craig (advisor)
Unit Nebraska Cooperative Fish and Wildlife Research Unit
Email callen3@unl.edu
Phone 402-472-0229
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=647
Project Information
Title The Effect of Common Reed (Phragmites australis) on River Otter (Lontra canadensis) Habitat Use
Other(s) Amy Williams, amy_ruth18@hotmail.com; Sam Wilson, Nebraska Game and Parks Commission, sam.wilson@nebraska.gov 
Description The river otter (Lontra canadensis) is a threatened species in Nebraska and little is known about its local ecology. The recent invasion of the Platte River by the common reed (Phragmites australis) has altered the riverscape and could have negative effects on otters. Since the reintroduction of river otters to several of Nebraska's river basins beginning in the late 1980's, there have been no quantitative studies examining the status of the population or habitat use of river otters in the state. The recent invasion of P. australis in the Big Bend region of the Platte River has made the need to fill this knowledge gap more critical. We are examining the effects of P. australis on river otters by determining if otters use river ways dominated by P.australis or den in areas of P. australis more or less than expected relative to availability. Sixteen otters were trapped, radio tagged, and tracked between 2006 and 2009. 517 den/resting locations were identified, 127 of which were unique locations. Den/resting site habitat use was compared to availability to determine if otters were using P. australis in proportion to availability. Females use unique sites in P. australis more than expected but males do not. When all locations were analyzed, both males and female used P. australis in proportion to availability. P. australis provides cover for females and is likely used for resting locations when traveling with pups. Information on otter abundance and habitat use from this study will support the creation and implementation of a state river otter management plan and ensure the persistence of a viable otter population in Nebraska.

Project Support

Nebraska Cooperative Fish and Wildlife Research Unit, Nebraska Game and Parks Commission
Project Website http://snr.unl.edu/necoopunit/research.main.html#river_otters
Report
Current Status Completed
Topic Production Agriculture
Project's Primary Contact Information
Name Supalla, Raymond
Unit Agricultural Economics
Email rsupalla1@unl.edu
Phone 402-472-1792
Web Page http://agecon.unl.edu/supalla
Project Information
Title Economic and State Budget Cost of Reducing the Consumptive Use of Irrigation Water in the Platte and the Republican Basins
Other(s) Brian McMullen, Agricultural Economics, bmcmullen2@unl.edu 
Description

The terms of the Cooperative Agreement for the Platte Basin and the Supreme Court settlement decision for the Republican Basin both require that Nebraska reduce its consumptive use of irrigation water. This analysis evaluated the economic and the budgetary costs of meeting these requirements. Both the on-farm and off-farm costs were evaluated for both land retirement and water allocation programs, implemented in several different ways, over three alternative time periods, 10, 25 and 50 years.

The on-farm economic costs were defined as the change in net farm income associated with less irrigation. Off-farm economic costs were defined as the statewide change in household income resulting from changes in irrigation, as the effects ripple through the Nebraska economy. Budgetary costs were defined as the cost to the state budget (taxpayers) of policies which compensate irrigators for reducing consumptive use are implemented. Statewide economic costs were found to be lower for land retirement than for allocation programs, assuming the same total change in consumptive use. Total budgetary costs depended primarily on: where the irrigation reductions occurred (proximity to river); on how long the program was continued (number of years), and on whether irrigation was reduced voluntarily with incentives, or by regulation, or by some combination of regulation and incentives. It was found that policy makers could minimize the cost of reducing consumptive use from irrigation and augmenting stream flow by purchasing rather than leasing irrigation rights, by using a regulatory rather than a willing seller incentive approach, and by reducing irrigation at locations close to the river.

More on this research in a UNL Agricultural Economics working paper

Project Support n/a
Project Website
Report
Current Status Completed
Topic Sandhills Studies and Modeling
Project's Primary Contact Information
Name Efting, Aris
Unit School of Natural Resources
Email aefting@unl.edu
Phone 402-472-3471
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=226
Project Information
Title Determining Toxic Algal Bloom Frequency in Nebraska Lakes
Description Research has been conducted in the Sandhills to determine whether or not there has been an increase in toxic algal blooms. Four different lakes were cored to identify the lakes' history of toxic algal blooms and determine whether there is an increase in toxin concentrations post 1950.
Project Support Layman Fund
Project Website
Report
Current Status Underway
Topic Sandhills Studies and Modeling
Project's Primary Contact Information
Name Hu, Qi (Steve)
Unit School of Natural Resources
Email qhu2@unl.edu
Phone 402-472-6642
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=54
Project Information
Title The Missing Term in Surface Water Balance in the Great Plains
Other(s) Jinsheng You, School of Natural Resources, jyou2@unl.edu 
Description

It has been recognized that the surface water budget derived from the NCEP-NCAR Reanalysis and other existing climatic datasets is not in balance in the Great Plains region. This imbalance is shown by large surface evaporation which cannot be supported by source terms in the budget equation. This large surface evaporation is always appearing in calculations from the surface and soil moisture conditions specified in those datasets. This imbalance poses serious uncertainties to diagnostic and modeling studies of energy and carbon balances and to our understanding of atmospheric/climatic processes in this region. An effort aiming at identifying sources causing the water budget imbalance has been underway and some preliminary results have been obtained. A main source of the imbalance arises from the calculation of the surface evaporation. It was found that the surface and soil water specified in those datasets (developed from integrations of both observations and model simulations) is biased because of inaccurate descriptions of the soil properties, particularly the sandy soils in the Nebraska Sand Hills. A revised model with more accurate descriptions of the soils and soil hydrology in the Sand Hills has produced a balance surface water budget in the Sand Hills.

Project presentation at the 2008 Water Colloquium

Project Support Department of Commerce - National Oceanic and Atmospheric Administration (NOAA)
Project Website
Report
Current Status
Topic Sandhills Studies and Modeling
Project's Primary Contact Information
Name Hubbard, Kenneth
Unit High Plains Regional Climate Center
Email khubbard1@unl.edu
Phone 402-472-8294
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=55
Project Information
Title Assessment of Soil Moisture Dynamics of the Nebraska Sandhills Using Long-Term Measurements and a Hydrology Model
Other(s) Venkataramana Sridhar; David Wedin, School of Natural Resources, dwedin1@unl.edu 
Description Soil moisture, evapotranspiration, and other major water balance components were investigated for six Nebraska Sandhills locations during a 6 year period (1998-2004) using a hydrological model. Annual precipitation in the study period ranged from 330 to 580 mm. Soil moisture was measured continuously at 10, 25, 50, and 100 cm depth at each site. Model estimates of surface (0-30 cm), subsurface (30-91 cm), and root zone (0-122 cm) soil moisture were generally well correlated with observed soil moisture. The correlations were poorest for the surface layer, where soil moisture values fluctuated sharply, and best for the root zone as a whole. Modeled annual estimates of evapotranspiration and drainage beneath the rooting zone showed large differences between sites and between years. Despite the Sandhills' relatively homogeneous vegetation and soils, the high spatiotemporal variability of major water balance components suggest an active interaction among various hydrological processes in response to precipitation in this semiarid region.
Project Support National Science Foundation, High Plains Regional Climate Center
Project Website
Report Hubbard06.pdf
Current Status Published in Journal of Irrigation and Drainage Engineering, September/October 2006, 463-473
Topic Sandhills Studies and Modeling
Project's Primary Contact Information
Name Loope, David
Unit Earth and Atmospheric Sciences
Email dloope1@unl.edu
Phone 402-472-2647
Web Page http://eas.unl.edu/people/faculty_page.php?lastname=Loope&firstname=David&type=REG
Project Information
Title Large Wind Shift on the Great Plains During the Medieval Warm Period
Other(s) Venkataramana Sridhar; James Swinehart, School of Natural Resources, jswinehart1@unl.edu; Joseph Mason, University of Wisconsin, Madison, mason@geography.wisc.edu; Robert Oglesby, School of Natural Resources, roglesby2@unl.edu; Clinton Rowe, Geosciences, crowe1@unl.edu 
Description Spring-Summer winds from the south move moist air from the Gulf of Mexico to the Great Plains. Growing season rainfall sustains prairie grasses that keep large dunes in the Nebraska Sandhills immobile. Longitudinal dunes built during the Medieval Warm Period (800-100 yBP) record the last major period of sand mobility. These dunes are oriented NW-SE and are composed of cross-strata with bi-polar dip directions. The trend and structure of these dunes directly record a prolonged drought that was initiated and sustained by a historically unprecedented shift of Spring-Summer atmospheric circulation over the Plains: southerly flow of moist air was replaced by dry southwesterly flow.
Project Support National Science Foundation
Project Website
Report Loope Wind Shift.pdf
Current Status Published in Science November 2007 318:1284-1286
Topic Sandhills Studies and Modeling
Project's Primary Contact Information
Name Wedin, Dave
Unit School of Natural Resources
Email dwedin1@unl.edu
Phone 402-472-9608
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=128
Project Information
Title Sand Hills Biocomplexity Project
Other(s) Vitaly Zlotnik, Department of Geosciences, vzlotnik1@unl.edu. 
Description

The Sand Hills, the largest sand dune area in the Western Hemisphere, is now stabalized by native grasses. This was not always the case. The Sand Hills have mobilized several times over the last 10,550 years. Major droughts destabilized significant portions of the Sand Hills as recently as 1000 years ago. The stability of the Sand Hills affects not only hundreds of cattle ranches, but also the recharge of the High Plains Aquifer. Of the total groundwater stored in this vast aquifer, 65% occurs in Nebraska and over half of that lies under the Sand Hills. The groundwater connection is obvious throughout the region. Due to the high water table, interdunal valleys in portions of the Sand Hills contain extensive complexes of lakes, wetlands, and naturally sub-irrigated wet meadows, which together cover over 10% of the landscape.

The Sand Hills Biocomplexity Project is a major federal project led by Professor Wedin. The project is aimed at testing whether:

  1. Evapotranspiration (ET) from wet valleys buffers the impacts of short-term drought on upland grasslands through local climate feedbacks. (resistance stability)
  2. When wetlands go dry, the combined effect of lost upland grass cover and lost wetland ET creates a desertification feedback that amplifies drought impacts.
  3. Since subregions of the Sand Hills differ in their extent of interdunal wetlands, subregions respond differently to paleo and historic droughts, thus enabling landowners to prepare for future droughts.
  4. Increased groundwater recharge when dunes are bare hastens the rise of groundwater levels, which, together with the rapid recovery of warm season grasses, restabilizes the dunes. (resilience stability)

The project's Grassland Destabilization Experiment (GDEX) is studying what happens to a Sand Hills dune when the vegetation dies. Researchers have created 10 circular plots at the Barta Brothers Ranch, each 120 meters in diameter, and used herbicide to kill all the vegetation on several of them. The plots are kept clear of vegetation, so that information on vegetation coverage, root mass, soil organic matter, and sand movement may be monitored and recorded to determine the stability of the plots. Results indicate that the Sand Hills may be more stable than previously thought; that is, ersosion is just starting to occur were vegetation was killed two years ago. Additional studies are needed to determine what happens when sand dunes become mobile.

As a part of this project, Professor Vitaly Zlotnik carries out research on groundwater recharge, hydraulic properties of the dune cover, and the climate change effects on groundwater recharge.

Project Support National Science Foundation
Project Website http://sandhills-biocomplexity.unl.edu/
Report
Current Status n/a
Topic Wastewater
Project's Primary Contact Information
Name Bartelt-Hunt, Shannon
Unit Civil Engineering
Email sbartelt2@unl.edu
Phone 402-554-3868
Web Page http://www.engineering.unl.edu/civil/faculty/ShannonBartelt-Hunt.shtml
Project Information
Title The occurrence of illicit and therapeutic pharmaceuticals in wastewater effluent and surface waters in Nebraska
Other(s) Daniel D. Snow, School of Natural Resources, dsnow1@unl.edu; Teyona Damon; Johnette Shockley; Kyle Hoagland, School of Natural Resources, khoagland1@unl.edu 
Description The occurrence and estimated concentration of twenty illicit and therapeutic pharmaceuticals and metabolites in surface waters influenced by wastewater treatment plant (WWTP) discharge and in wastewater effluents in Nebraska were determined using Polar Organic Chemical Integrative Samplers (POCIS). Samplers were installed in rivers upstream and downstream of treated WWTP discharge at Lincoln, Grand Island, and Columbus, downstream of Hastings' WWTP discharge, and from Omaha's effluent channel just prior to it being discharged into the Missouri River. Based on differences in estimated concentrations determined from pharmaceuticals recovered from POCIS, WWTP effluent was found to be a significant source of pharmaceutical loading to the receiving waters. Effluents from WWTPs with trickling filters or trickling filters in parallel with activated sludge resulted in the highest observed in-stream pharmaceutical concentrations. Azithromycin, caffeine, 1,7 - dimethylzanthine, carbamazepine, cotinine, DEET, diphenhydramine, and sulfamethazine were detected at all locations. Methamphetamine, an illicit pharmaceutical, was detected at all but one of the sampling locations, representing only the second report of methamphetamine detected in WWTP effluent and in streams impacted by WWTP effluent.
Project Support n/a
Project Website
Report Bartelt-Hunt_Wastewater.pdf
Current Status Published in Environmental Pollution 2009 157:786-791
Topic Water Quality
Project's Primary Contact Information
Name Kolok, Alan
Unit Biology, UNO
Email akolok@mail.unomaha.edu
Phone 402-554-3545
Web Page http://www.unomaha.edu/envirotox/whoiam.php
Project Information
Title The Watershed as A Conceptual Framework for the Study of Environmental and Human Health
Other(s) Cheryl L. Beseler, Department of Environmental, Agricultural and Occupational Health, UNMC, cbeseler@unmc.edu; Xun-Hong Chen, School of Natural Resources, xchen2@unl.edu; Patrick J. Shea, School of Natural Resources, pshea1@unl.edu 
Description

The watershed provides a physical basis for establishing linkages between aquatic contaminants, environmental health and human health. Current attempts to establish such linkages are limited by environmental and epidemiological constraints. Environmental limitations include difficulties in characterizing the temporal and spatial dynamics of agricultural runoff, in fully understanding the degradation and metabolism of these compounds in the environment, and in understanding complex mixtures. Epidemiological limitations include difficulties associated with the organization of risk factor data and uncertainty about which measurable endpoints are most appropriate for an agricultural setting. Nevertheless, the adoption of the watershed concept can alleviate some of these difficulties. From an environmental perspective, the watershed concept helps identify differences in land use and application of agrichemicals at a level of resolution relevant to human health outcomes. From an epidemiological perspective, the watershed concept places data into a construct with environmental relevance. This project uses the Elkhorn River watershed as a case study to show how the watershed can provide a conceptual framework for studies in environmental and human health.

Environmental sampling is necessary for evaluating exposure to hormone disrupting chemicals (HDCs); however, sampling is not systematic in time or space, nor does it represent the time frame necessary to adequately link it to human disease outcomes. Although data from municipal sources are available and reliable, countless private drinking water wells go untested and unmonitored. These wells may be in areas vulnerable to concentrated reservoirs of contaminants due to the soil type, infiltration rate, runoff potential, organic matter and erodibility coupled with land use in the region and the chemical properties of the contaminants introduced into the environment. The lack of a defined boundary and introduction of exposure heterogeneity is one of the primary reasons why associations to health outcomes cannot be shown in environmental epidemiological studies.

The use of the watershed provides a natural boundary and the potential within this boundary to obtain denominator data. Based on the characteristics of the watershed combined with sampling data, shared exposures can be identified and intermediate hypotheses tested using sentinel markers of exposure in fish and humans. Lastly, comparable groups identified in other watersheds with similar characteristics but different surrounding land uses can be used to replicate findings.

Project Support Department of Environmental, Agricultural and Occupational Health, University of Nebraska Medical Center
Project Website
Report Kolok_Watershed.pdf
Current Status Published in Environmental Health Insights 2009 3:1-10
Topic Water Quality
Project's Primary Contact Information
Name Kolok, Alan
Unit Biology, UNO
Email akolok@mail.unomaha.edu
Phone 402-554-3545
Web Page http://www.unomaha.edu/envirotox/whoiam.php
Project Information
Title Occurrence and biological effect of exogenous steroids in the Elkhorn River, Nebraska
Other(s) Daniel D. Snow, School of Natural Resources, dsnow1@unl.edu; Satomi Kohno, Department of Zoology, University of Florida, kohno@ufl.edu; Marlo K. Sellin, Department of Biology, UNO, msellin@mail.unomaha.edu; Louis J. Guillette Jr., Department of Zoology, University of Florida, ljg@ufl.edu 
Description

Recent studies of surface waters in North America, Japan and Europe have reported the presence of steroidogenic agents as contaminants. This study had three objectives:

  1. to determine if steroidogenic compounds are present in the Elkhorn River,
  2. to determine if sediments collected from the Elkhorn River can act as a source of steroidogenic compounds to aquatic organisms, and
  3. to determine if site-specific biological effects are apparent in the hepatic gene expression of fathead minnows.

Evidence was obtained using three approaches:

  1. deployment of polar organic chemical integrative samplers (POCIS),
  2. deployment of caged fathead minnows, and
  3. a laboratory experiment in which POCIS and fish were exposed to sediments from the deployment sites.

Deployment sites included: the Elkhorn River immediately downstream from a Nebraska wastewater treatment plant, two waterways (Fisher Creek and Sand Creek) likely to be impacted by runoff from cattle feeding operations, and a reference site unlikely to be impacted by waste water inputs. The POCIS extracts were analyzed for a number of natural steroids and metabolites, as well as four different synthetic steroids: ethinylestradiol, zearalonol, 17-trenbolone and melengestrol acetate. Estrogenic and androgenic metabolites, as well as progesterone and trace levels of melengestrol acetate were detected in POCIS deployed at each site. POCIS deployed in tanks containing field sediments from the four sites did not accumulate the synthetic steroids except for ethinylestradiol, which was detected in the aquarium containing sediments collected near the wastewater treatment plant. Fish deployed in Sand Creek and at the wastewater treatment plant experienced significantly elevated levels of gene expression for two genes (StAR and P450scc) relative to those deployed in Fisher Creek. Fish exposed to the sediments collected from Sand Creek had significantly higher levels of hepatic StAR and P450scc gene expression than did fish exposed to sediments from the two other field sites, as well as the no-sediment control tank.

In conclusion:

  1. detectable levels of steroidogenic compounds were detected in passive samplers deployed in the Elkhorn River,
  2. sediments do not appear to be a significant source for steroidogenic compounds, and
  3. site-specific differences were found in mRNA expression among the different treatment groups of fish; however, a functional explanation for these differences is not readily forthcoming.
Project Support Nebraska Game and Parks Commission, U.S. Geological Survey's Section 104b Program as administered by the UNL Water Center, US Environmental Protection Agency Greater Opportunities Fellowship, Dr. Daniel Villeneuve, US Environmental Protection Agency
Project Website
Report Kolok_Elkhorn.pdf
Current Status Published in Science of the Total Environment 2007 388:104-115
Topic Water Quality
Project's Primary Contact Information
Name Riens, John
Unit Wisconsin Ecological Services Field Office, U.S. Fish & Wildlife Service
Email John_Riens@fws.gov
Phone 541-885-2503
Web Page http://www.fws.gov/
Project Information
Title Macroinvertebrate Response to Buffer Zone Quality in the Rainwater Basin Wetlands of Nebraska
Other(s) W. Wyatt Hoback, Biology UNK, hobackww@unk.edu; Matt Schwarz, U.S. Fish & Wildlife Service 
Description

The Rainwater Basin is one of the most endangered wetland ecosystems in North America. This ecosystem is critical to many species including migratory waterfowl. Land use and runnoff from agriculture and cattle confinement operations are likely to be reducing the basin's health and diversity, however little information exists concerning macroinvertebrates. Twenty-two locations were assessed for water quality parameters, vegetation composition, and macroinvertebrates identified to genus. Samples were collected biweekly starting in April through July for three years. Macroinvertebrate diversity was impacted in areas with little buffer although the effects were not pronounced. Institution of a more effective vegetative buffers strip may reverse this trend to improve ecosystem quality and provide for invertebrate resources for migratory birds.

Click here to see a poster about this research

Project Support n/a
Project Website
Report
Current Status Completed
Topic Water Quality
Project's Primary Contact Information
Name Spalding, Roy
Unit Agronomy and Horticulture
Email rspalding1@unl.edu
Phone 402-472-8214
Web Page http://agronomy.unl.edu/spalding
Project Information
Title Risk-Managed Approach for Routing Petroleum Pipelines: Keystone XL Pipeline, Nebraska
Other(s) Aaron Hirsh, Department of Civil Engineering, ajhirsh@huskers.unl.edu 
Description

TransCanada’s proposed international crude oil pipeline route over sensitive, relatively pristine, subirrigated land underlain by the Ogallala aquifer led to increased scrutiny and eventual rejection of the Keystone XL pipeline. Pipeline routing could be made much more acceptable by adopting risk-managed routes that lessen the potential to adversely impact high-quality groundwater and, should a release occur, decrease the longevity of hazardous groundwater contaminants. Threats to water quality are taken quite seriously in states like Nebraska where 85% of the population depend on groundwater for potable water.

The authors proposed a southeasterly route through Holt, Antelope and Pierce counties, to the existing north-south Keystone 1 pipeline, avoiding the Ogallala aquifer beneath the fragile and pristine Sandhills, sub-irrigated meadows and areas with very shallow water tables. The risk-managed route through these three counties is through overlying row-cropped land underlain by already contaminated Ogallala groundwater to the Keystone 1 corridor.

Since little is known about the potential movement of dilbit (diluted bitumen) to groundwater at release sites, the study states that one of the best ways to minimize risks from a potential spill is to carefully select a pipeline route with minimal environmental risk and reasonable length. There are so many variables including the chemical composition of the dilbit, ambient temperature, depth to groundwater, emergency cleanup practices and other factors, that predicting the exact mechanism of contaminant movement to the aquifer is complicated. Additionally, the existing nitrate contamination in Holt, Antelope and Pierce counties stretches for over 100 miles and 1 million acres. These leached soils enhance the degradation of hazardous petroleum compounds in groundwater.

Project Support Nebraska Ethanol Board and Hatch grant 21-6222-1055
Project Website
Report Risk_Managed_Petroleum_Pipeline.pdf
Current Status Completed
Pic 1 Project Image
Topic Watershed Management
Project's Primary Contact Information
Name Allen, John C.
Unit Agricultural Economics
Email jallen1@unl.edu
Phone 435-797-9732
Web Page
Project Information
Title Socio-Cultural Study of the Middle Platte River Region of Nebraska: Building Capacity for Community-Based Conservation
Description Telephone surveys, focus group interviews, and in-depth interviews were conducted in 1997 and community profiles developed in 1998 to provide an integrated picture of the social and cultural factors that influence how Middle Platte River residents and communities perceive the river; where their futures fit with the perceived best case scenarios; and the future they see for themselves, their family, and their community.
Project Support U.S. Environmental Protection Agency
Project Website http://watercenter.unl.edu/PRS/PlatteRiverReports/Socio-Cultural%20Study%20of%20the%20Middle%20Platte%20River.pdf
Report
Current Status Completed
Topic Watershed Management
Project's Primary Contact Information
Name Jenkins, Allan
Unit Economics
Email
Phone
Web Page
Project Information
Title Middle Platte Socioeconomic Overview
Description This report was published in February 1999 and designed to provide a common body of knowledge to all groups engaged in decisions regarding the Platte River. Recognizing that different decision-makers have different levels of prior knowledge concerning the Platte River, the author attempted to create a document suitable for a range of audiences that also facilitated discussion.
Project Support U.S. Environmental Protection Agency
Project Website http://watercenter.unl.edu/PRS/PlatteRiverReports/The%20Platte%20Watershed%20Program.pdf
Report
Current Status Completed
Topic Watershed Project
Project's Primary Contact Information
Name Shelton, David
Unit Biological Systems Engineering and Extension Agricultural Engineer
Email dshelton2@unl.edu
Phone 402-584-3849
Web Page http://bse.unl.edu/dshelton2
Project Information
Title Shell Creek Watershed Improvement Project
Other(s) Rod Wilke, Northeast REC, rwilke2@unl.edu 
Description

Through a several-entity partnership best management practices (BMPs) are being adopted or installed in the Shell Creek Watershed, helping to protect the quality of both surface and ground water. Shell Creek drains approximately 300,000 acres in parts of Boone, Colfax, Madison, and Platte counties, and has a history of flooding that has frequently caused damage along its length. Shell Creek has been on the Nebraska's list of impaired waters for fecal coliform bacteria and other impairments. Soil erosion is a major problem throughout the watershed.

Using a variety of delivery methods, cooperative educational programming led by Extension in the Shell Creek Watershed primarily focuses on: the water quality benefits of (BMPs, management needed to ensure BMP success, and the availability of enhanced and/or special cost-share funding for BMP adoption or installation within targeted areas of the watershed. Key accomplishments since the project was initiated in September 2004 include:

  • Twenty-nine illegal wells were properly decommissioned thus protecting water quality and human health and safety. One of these was a 36-inch diameter, 50-foot deep dug well that the landowner discovered when the front wheel of his tractor dropped into it. He did not know that this well was there, despite having grown up on that farm.
  • Thirty-one sub-standard or failing septic systems were upgraded to current standards. Before upgrading, septic tank effluent was surfacing in at least two of these systems, while another system had no drainfield and the effluent was piped directly to Shell Creek. Over two million gallons of domestic wastewater annually is now being properly treated because of these upgrades, substantially reducing the risks to public health and the environment.
  • Forty-eight producers contracted for the implementation of no-till planting on nearly 6,600 acres of cropland for a period of at least five years. This conversion will result in an estimated soil erosion reduction of over 328,500 tons annually.
  • Fifty-two contracts for buffers and other structural practices were installed on a total of 215 acres of cropland. The conversion of this land to permanent vegetative cover will reduce soil erosion on the order of 3,200 tons per year and provide excellent wildlife habitat. These practices and additional benefits include:
  • five stream-side filter strips installed by three individuals on 38.1 acres that will filter the runoff from approximately 1,200 upslope acres;
  • a 6.0 acre riparian forest buffer that will filter the runoff from approximately 200 upslope acres and may provide future income from the sale of some of the trees that were planted;
  • thirteen grassed waterways, totaling 36.3 acres, installed by six individuals, will filter and direct the runoff from approximately 400 acres of upslope cropland;
  • a nearly 5-acre field windbreak that may contribute to increased yields by reducing wind velocity on the adjacent crop;
  • three buffers that provide 31.9 acres of habitat especially suited for northern bobwhite quail;
  • and contour buffers totaling 17.2 acres on two farms that will help reduce soil erosion by slowing the flow of runoff water and trapping sediment carried by the runoff.

In aggregate, over $1 million in incentive, land rental, cost-sharing, and other payments is being infused into the Shell Creek Watershed as a direct result of this programming. These payments include:

  • $289,800 for the implementation of no-till planting systems and associated management practices.
  • $198,500 for the installation of various types of conservation buffers.
  • $40,700 to upgrade failing septic systems to meet current standards.
  • $10,050 to decommission out-of-service water wells.

This educational effort and special cost-share funding is a partnership among USDA Cooperative State Research, Education, and Extension Service; UNL Extension; PrairieLand Resource, Conservation and Development Council; Shell Creek Watershed Improvement Group; Natural Resources Conservation Service; Pheasants Forever; and the Lower Platte North Natural Resources District.

Project Support Nebraska Department of Environmental Quality Section 319 Program (U.S. Environmental Protection Agency), Nebraska Environmental Trust.
Project Website http://www.newman.esu8.org/vnews/display.v/SEC/Activities%3E%3EWatershed%20Project
Report Shelton_Buffers.pdf
Current Status Completed
Topic Wetlands
Project's Primary Contact Information
Name Tang, Zhenghong
Unit Architecture
Email ztang2@unl.edu
Phone 402-472-9281
Web Page http://architecture.unl.edu/people/bios/tang_zhenghong.shtml
Project Information
Title Developing LiDAR-Derived Wetland Maps To Assess Conservation Design Practices For Playa Wetlands In Rainwater Basin
Other(s) Ed Harvey, School of Natural Resources, feharvey1@unl.edu; Xu Li, Department of Civil Engineering 
Description The overall goal of this project is to provide wetland managers with topographically-correct 3-D wetland maps to prioritize wetland conservation efforts and assess wetland conservation design practices. This project addresses three specific tasks for the playa wetlands: 1) Establish accurate, topographically-correct, 3-D wetland maps to relate weather conditions and wetland functions; 2) Develop a measurable Restorable Wetland Index to prioritize playa wetland and drainages conservation; 3) Assess wetland conservation design practices for watershed-based wetland conservation. This research will use high-resolution Light Detections And Ranging (LiDAR) data to create next-generation wetland maps for playa wetlands. The research provides the missing link in conservation design as these data will provide accurate elevation measures to delineate watershed extent and determine the impact of individual hydrologic modifications. This project will be one of the first to integrate LiDAR data and a hydrologic modifications datasets to find the relations of current weather conditions and wetland functions. This project provides reliable, accurate wetland spatial parameters to prioritize playa wetland conservation and assess the effectiveness of existing wetland conservation design practices. The wetland conservation design tools and protocols will be examined in two pilot counties in Nebraska. The intellectual merit of the research is based on advancing knowledge linkage of wetland mapping technologies and wetland function modifications, and showing how to adapt wetland conservation designs. The outputs from this project provide practical protocols for state/regional/local wetland managers and thus ensure "no net loss" in quality and quantity of wetlands.
Project Support US EPA
Project Website
Report
Current Status Completed
Topic Wildlife
Project's Primary Contact Information
Name Pegg, Mark
Unit School of Natural Resources
Email mpegg2@unl.edu
Phone 402-472-6824
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=739
Project Information
Title Habitat Usage of Missouri River Paddlefish Project
Description Sediment from the Niobrara River has created a delta area near the headwaters of Lewis and Clark Lake, the reservoir formed by Gavins Point Dam on the Missouri River. This sediment aggregation has reduced reservoir volume and threatens to fill the reservoir; therefore, restoration of reservoir capacity has been proposed by means of high-velocity water releases from upstream mainstem dams. Biologists, however, have reported that this delta area may serve as spawning grounds for native fishes like paddlefish, and may provide suitable spawning habitat for federally endangered pallid sturgeon. This situation has created a unique paradox where information is needed to provide insight into fulfilling both the river management needs and biological needs in the Missouri River. This project will use paddlefish telemetry to study spawning success.

Click here to read Brenda Pracheil's dissertation on Paddlefish populations

Project Support Nebraska Environmental Trust
Project Website
Report Pracheil et al_Fisheries_2012.pdf
Current Status Completed
Topic Wildlife
Project's Primary Contact Information
Name Pegg, Mark (advisor)
Unit Nebraska Cooperative Fish and Wildlife Research Unit
Email mpegg2@unl.edu
Phone 402-472-6824
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=739
Project Information
Title Catfish Population Dynamics in the Platte River, Nebraska
Other(s) Tony J. Barada, abarada2@unl.edu 
Description

Catfish angling is popular throughout the United States and catfish are the most sought after fish species in the Platte River. However, catfish management in the Platte River is minimal as little is known about current populations. The objective of this study was to determine the current status of channel catfish and flathead catfish populations in the central and lower Platte River. Specifically, the study evaluated population characteristics including relative abundance, size structure, condition, age, growth and mortality.

Channel catfish are much more abundant than flathead catfish in the Platte River. The current Platte River channel catfish population appears to be average, comparable to many Nebraska and Midwestern rivers. Population characteristics displayed considerable variation along the Platte River and some longitudinal patterns were evident. Channel catfish in the central Platte River had lower relative abundances, higher condition, greater size structure, faster growth and lower mortality compared to lower Platte River channel catfish. Key factors likely influencing differences in channel catfish population characteristics are prey availability, flow modifications, habitat characteristics, tributary inflows and angler exploitation. Water manipulations from the Loup River Power Canal were also identified as a possible negative influence on lower Platte River channel catfish populations because hydropeaking is likely creating a stressful environment. However, channel catfish in the central Platte River appear to have benefited from recent high flows that likely increased productivity and food availability in the central Platte River.

Tony Barada's Master's Thesis on Catfish Population Dynamics in the Platte River

Project Support Nebraska Game and Parks Commission, Federal Aid in Sportfish Restoration
Project Website
Report
Current Status Graduate thesis project completed - thesis available at UNL CY Thompson Library (Call # LD3656 2009 .B373)
Topic Wildlife
Project's Primary Contact Information
Name Pope, Kevin
Unit Nebraska Cooperative Fish and Wildlife Research Unit
Email kpope2@unl.edu
Phone 402-472-7028
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=759
Project Information
Title Population Assessment of Channel Catfish in Nebraska
Other(s) Lindsey Chizinski, Graduate Assistant 
Description

Channel catfish (Ictalurus punctatus) is an important sport fish, particularly in the Great Plains. In Nebraska, a majority of anglers target channel catfish, and fishing activities are a vital part of the state’s economy. Lentic water bodies provide the primary fishing opportunity for catfish anglers in Nebraska. Despite the popularity and economic importance of channel catfish, little is known of its population dynamics or habitat requirements, and existing studies often profile river populations.

Current standards for sampling channel catfish in lentic systems often yield inadequate catch to assess populations. The objective of this study was to utilize a recently developed sampling method, tandem-set hoop nets, to collect channel catfish in sufficient quantities to describe the effects of stocking and habitat variability on populations in lentic ecosystems. Three lentic ecosystems common to the Great Plains were considered: sand pits, flood-control reservoirs, and irrigation/power-generation reservoirs.

The influence of stocking on abundance and condition of channel catfish varied with ecosystem type. In sand pits, stocking negatively influenced fish condition, and only stocking on an annual basis positively influenced abundance. In flood-control reservoirs, stocking did not influence fish condition, but was associated with greater abundance. In irrigation/power-generation reservoirs, stocking did not influence fish condition or abundance. Additionally, there was evidence that mortality and growth rates varied with ecosystem type. In general, channel catfish from irrigation/power-generation reservoirs were predicted to experience slower growth and lower mortality, whereas channel catfish from sand pits were predicted to experience the fastest growth and highest mortality.

Catch rates of channel catfish were substantially less in this study compared to previous records of tandem-set hoop net surveys, but hoop nets were more efficient than the current standard gear, experimental gill nets, at capturing channel catfish. That is, 100 channel catfish could be captured with fewer sets of hoop nets than gill nets. However, catch rates and size structure of channel catfish in tandem-set hoop nets varied within the sampling season and between years. Furthermore, length-frequency distributions of channel catfish were dissimilar between hoop nets and gill nets.

Click here to read Lindsey Chizinski's Master's Thesis on Channel Catfish Population in Nebraska

Project Support Nebraska Game and Parks Commission
Project Website http://snr.unl.edu/necoopunit/research.main.html#channel_catfish
Report
Current Status Completed
Topic Wildlife
Project's Primary Contact Information
Name Vivian, Lindsay A.
Unit Biology, UNK
Email lindsayviv@gmail.com
Phone 308-379-4587
Web Page
Project Information
Title Updating the Distribution and Population Status of the Platte River Caddisfly
Other(s) W. Wyatt Hoback, Biology UNK, hobackww@unk.edu 
Description The Platte River caddisfly, Ironoquia plattensis, was first described in 1999 from a warm water slough just south of Grand Island, NE. Using a benthic core sampling method, the investigators reported an average caddisfly larval density of 805 ± 194/m2. In 2004, there were no Platte River caddisflies observed at the 1999 study site. Ironoquia plattensis has been observed at five other locations in the central Platte region, but only two of the six historic populations are considered stable. Between 2002 and 2005, central Nebraska suffered an extensive drought, which could have taken its toll on the caddisfly. The sloughs where Ironoquia plattensis occur are typically wet nine months out of the year and dry during the summer. During the summer of 2009, four historic sites and one new, previously unrecorded site were sampled for larvae using a 30 cm D-frame net to sample a one meter swath a minimum of four times from each location. Using a GIS (Geographic Information Systems) predictive model and Google Earth, additional areas are being surveyed for the presence of the Platte River Caddisfly. The GIS model was created using local groundwater data from 1999 to the present, a soils layer, high resolution imagery, and a vegetation map analysis. If more populations are found, transects will be set up on the slough banks, and a quadrat will be used to quantify larval abundance in these areas. This will also be done at all historic locations. The goal is to establish the population status of this very rare insect of Nebraska which is adapted to the seasonal flows of the Platte River.

Lindsay Vivian's Master's Thesis on Platte River Caddisfly

For more information, read this journal article in the Annals of the Entomological Society of America

Project Support US Fish and Wildlife Service
Project Website
Report
Current Status In progress
Topic Wildlife
Project's Primary Contact Information
Name Young, Chelsey
Unit Biology, UNK
Email youngca2@unk.edu
Phone 507-469-8284
Web Page
Project Information
Title A range-wide assessment of plains topminnow (Fundulus sciadicus) distribution and potential threats
Other(s) W. Wyatt Hoback, Biology UNK, hobackww@unk.edu; Keith Koupal, Biology UNK; Justin Haas 
Description The plains topminnow, Fundulus sciadicus, was once distributed from the Mississippi River to the Rocky Mountains, north to South Dakota and as far south as Oklahoma. Two centers of distribution are recognized. One is centered in Nebraska and the second is centered in Missouri. The geographic range of plains topminnow has decreased in the past decades. Plains topminnow are now considered a species of special concern in the state of Nebraska and listed as a Tier 1 species in the Nebraska Natural Legacy Project. Elimination of plains topminnow populations has been associated with introduction of invasive species, as well as loss of backwater habitats due to drought and lowered water tables. The objective of this project is to provide an updated assessment of plains topminnow distribution and population status as compared to all available historical records. Between 2004 and the present, sampling of plains topminnow revealed that in Nebraska 77% of historic Nebraska sites no longer contain plains topminnow populations. The sampling of remaining historic sites in Nebraska and neighboring states will continue in the 2009 sampling season.
Project Support n/a
Project Website
Report topminnow_range_reduction.pdf
Current Status Completed