NU Water-Related Research in District 43

The list below shows water-related research being conducted within your district or that affects your district. They are sorted by water topic, then by primary contact's last name.

Displaying 37 records found for District 43


Topic
Project's Primary Contact Information
Name van Donk, Simon
Unit West Central Research and Extension Center
Email simon.vandonk@unl.edu
Phone 308-696-6709
Web Page http://westcentral.unl.edu/web/westcentral/svandonk
Project Information
Title Site-specific management of heterogeneous fields
Other(s) Richard Ferguson, Department of Agronomy & Horticulture, rferguson1@unl.edu; Tim Shaver, West Central Research & Extension Center, tim.shaver@unl.edu 
Description

Variable rate technology (e.g., for irrigation, fertilization, seeding) has developed rapidly, enabling agricultural producers to practice site-specific management on heterogeneous fields. However, knowledge is lacking on how to implement site-specific management; the variable rate technology is available to producers, but knowledge is needed on where, when, and how much water and/or nutrients to apply. A research project was started in 2011, studying the interactions of landscape position (topography), soil type, irrigation and nitrogen.

Impact:Producers will be able to better implement site-specific management on heterogeneous fields benefitting their economic bottom line as well as the environment.

Project Support John Deere
Project Website
Report
Current Status Continuing
Topic Climate
Project's Primary Contact Information
Name Shulski, Martha
Unit High Plains Regional Climate Center
Email mshulski3@unl.edu
Phone 402-472-6711
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=474
Project Information
Title High Plains Regional Climate Center - Monitoring Stations
Description

As the demand for water grows, it is important to have reliable information for various assessments, such as drought, fire, and water development. In an effort to understand the surface hydrology and the water and energy interactions at the surface, scientists with the High Plains Regional Climate Center have installed a series of monitoring stations that collect temperature, humidity, solar radiation, windspeed and direction, soil temperature, precipitation and soil moisture data. These stations take hourly and daily data which can be used to calculate evapotranspiration and water balance terms. Monitoring equipment is located near Higgins Ranch, Sparks, Merritt, Ainsworth, New Port, Barta, Gudmundsens, Halsey, and Merna.

Volunteers supplement these stations by using rain gauges to monitor precipitation; volunteers enter their data online as part of the Nebraska Rainfall Assessment and Information Network (NeRAIN). In total volunteers from 40 states contribute precipitation data to the Community Collaborative Rain, Hail and Snow Network (CoCoRaHS). The CoCoRaHS network has been incorporated into the Applied Climate Information System (ACIS), which allows resource managers, researchers, and decision-makers to better access data.

Project Support National Climatic Data Center
Project Website http://hprcc.unl.edu
Report
Current Status Continuing
Topic Crop Water Use
Project's Primary Contact Information
Name Irmak, Suat
Unit Biological Systems Engineering
Email sirmak2@unl.edu
Phone 402-472-4865
Web Page http://bse.unl.edu/sirmak2
Project Information
Title Nebraska Agricultural Water Management Demonstration Network
Other(s) Gary Zoubek, York County Extension, gzoubek@unl.edu 
Description

The Nebraska Agricultural Water Management Demonstration Network (NAWMDN) encourages the adoption of newer technologies that will enable farmers to use water and energy resources associated with irrigated crop production efficiently. NAWMDN launched in 2005 and started with 20 growers from south central Nebraska who joined the Network as collaborators. In 2008 an online tool named ETgage was added to enable participation by growers throughout Nebraska.

The NAWMDN ETgage project is one part of a system for testing cutting-edge technologies and creating a network with growers, UNL Extension, NRDs, NRCS, and crop consultants, and other interested partners, that will enable the adoption of water and energy conservation practices. The simplicity of the use and interpretation of the ETgage data, as well as its economic feasibility, makes it easy for farmers to monitor crop water use for effective irrigation management. In this project ETgages are used to estimate crop water use, and Watermark sensors are used to measure soil moisture to determine irrigation timing and amount. Each year, NAWMDN team members organize educational meetings during the growing season and over the winter to implement the project, teach participants how to use the ETgage and Watermark sensors for irrigation management, review the results, set goals, and obtain grower feedback. This project has been reported at local, regional, and national meetings.

In 2005, there were 18 demonstration sites. Some of the ETgage and Watermark sensors were read by growers and some were read weekly by Network core members. In 2006, the second year of the project, there were more than 50 demonstration sites. In 2007 more than 125 cooperators in nine NRDs and 22 counties were involved. In the fall of 2007, 89 producers involved in the NAWMDN were surveyed; of those 56% responding, the estimated corn water savings varied from 0-7.5" with an average savings of 2.6," while soybeans water savings varied from 0-4.8" with an average of 2.1." Using 2007 diesel prices, this resulted in total energy savings of $2,808,000 and $2,269,800 for corn or soybeans over 117,000 acres.

In 2008 over 300 active participants from 25 counties in 9 of Nebraska's 23 NRDs. An interactive web site was also created to inform growers and other clients about the network and to educate producers and industry professionals about using these two tools along with crop stage of growth information to make irrigation management decisions. This interactive web site has engaged the cooperating producers and enhanced learning. The site consists of a map of Nebraska's 93 counties on which producers can select specific counties to find a Google gps map with ETgauge locations marked. Producers can click on specific sites to see the weekly reference evapoptranspiration (ET) reported by producers. The site also includes information about the NAWMDN and how to use the various tools.

For detailed information, see Nebraska Agricultural Water Management Demonstration Network: Integrating Research and Extension/Outreach.

Project Support Partners include personnel from 19 extension offices, the Little Blue NRD, the Upper Big Blue NRD, Nebraska Association of Resources Districts, Nebraska Natural Resources Conservation Service, South Central Agricultural Laboratory, and the Central Nebraska Public Power and Irrigation District.
Project Website http://water.unl.edu/cropswater/nawmdn
Report
Current Status Continuing
Topic Crop Water Use
Project's Primary Contact Information
Name Irmak, Suat
Unit Biological Systems Engineering
Email sirmak2@unl.edu
Phone 402-472-4865
Web Page http://bse.unl.edu/sirmak2
Project Information
Title A Decision Support Tool to Increase Energy and Crop Water Use Efficiency for Corn and Soybean Production
Description

Energy costs coupled with limitations in water availability are threatening the sustainability of irrigation in the state. Energy costs for irrigation rose almost 100 percent for typical Nebraska irrigators from the spring of 2003 to the summer of 2006 and continue to rise sharply. The rising cost of fuel and the limited availability of water make producing maximum crop yield with minimal input imperative.

Nebraska growers need scientifically based and practical management strategies that can aid them in their decision-making process to enhance crop water-use efficiency and reduce energy use to achieve maximum profitability. Growers are looking for answers on how to make a maximum use of limited irrigation water and how to manage irrigation water to reduce pumping cost.

Crop simulation models with the capability of "real-time" assessment of crop and soil water status and yield prediction based on historical climate data represent a powerful new tool to help improve irrigation decisions and increase water-use efficiency especially for situations where the amount of available water supply is less than the full requirement for maximum crop yield. This project validates and demonstrates a decision-support tool for a real-time irrigation scheduling period, and releases the new tool as a software program for use by crop producers, crop consultants, and industry professionals. This tool will be used to assess energy requirement for different irrigation regimes to aid growers and state and federal agencies to make better-informed management decisions.

Project Support Upper Big Blue Natural Resources District, Gard Fund
Project Website
Report
Current Status Underway
Topic Crop Water Use
Project's Primary Contact Information
Name Martin, Derrel
Unit Biological Systems Engineering
Email dmartin1@unl.edu
Phone 402-472-1586
Web Page http://bse.unl.edu/dmartin2
Project Information
Title Enhancing Irrigation Management Tools and Developing a Decision System for Managing Limited Irrigation Supplies - Enhancing The Water Optimizer
Other(s) Chris Thompson, Agricultural Economics, cthompson2@unl.edu; Paul Burgener, Panhandle Research and Extension Center, pburgener2@unl.edu; Ray Supalla, Agricultural Economics, rsupalla1@unl.edu; Gary Hergert, Panhandle Research and Extension Center, ghergert1@unl.edu 
Description

The Water Optimizer is a computer model developed in response to several years of drought across the state and to farmers facing water restrictions. The model can be used by producers to evaluate management options when water is limiting due to drought or regulations; it can also be used by water planners or policy makers who wish to estimate the farm-level economic consequences of retiring acres or regulating the water supply. Released by UNL in 2005, the model is available for all counties in Nebraska to evaluate single fields for several crop options. Irrigated crops include: corn, soybeans, sorghum, wheat, alfalfa, edible beans and sunflowers. Dryland crops include: corn, soybeans, sorghum, sunflowers, alfalfa and wheat in continuous, summer fallow and eco-fallow rotations. Producers put information into a Microsoft Excel spreadsheet, including soil type and irrigation system options. Irrigation options include center pivot or gravity irrigation systems, well or canal delivery, and systems powered by electricity, diesel or natural gas. After entering this basic information, producers enter their production costs, irrigation costs, crop prices, crop type and available water. After these parameters have been set, the program calculates what crops will be most profitable with the given costs and available water. This gives the producer a "whole farm view" in considering how to manage available water supplies.

While the Water Optimizer is useful, it is limited in that it considers economic choices and consequences one field (well) and one year at a time. Three different departments (Agronomy-Horticulture, Agricultural Economics and Biological Systems Engineering) will combine their expertise to develop information to enhance Water Optimizer by: 1) improving the tool's function for crops grown in the semiarid High Plains, including canola, camelina, chickpeas, dry beans and sunflowers; 2) expanding the tool's geographic coverage area to additional counties in Nebraska including irrigated areas in Colorado and Kansas; 3) developing the capability to evaluate risk-management alternatives on a whole-farm basis as well as field by field; and 4) developing the capability to determine the best strategies for managing multi-year water allocations. The benefits of this project will be to maintain profitability and sustain farming enterprises with a limited irrigation supply. The goal is to conduct educational programming in conjunction with the project to encourage other producers to implement practices and concepts demonstrated in this project. An additional outcome will be transferring this information to other areas of declining ground water or surface water.

The Water Optimizer tool was developed to assist in addressing water shortages created by drought and interstate water rights litigation. The current model released November 2010, supports all 93 Nebraska counties.

Project Support U.S. Department of Agriculture Risk Management Agency
Project Website http://agecon.unl.edu/wateroptimizer
Report
Current Status Underway
Topic Crop Water Use
Project's Primary Contact Information
Name van Donk, Simon
Unit West Central Research and Extension Center
Email svandonk2@unl.edu
Phone 308-696-6709
Web Page http://westcentral.unl.edu/web/westcentral/svandonk
Project Information
Title Determining the effect of the amount and timing of irrigation on corn production, using subsurface drip irrigation (SDI)
Description

It is important to learn how to grow crops with limited amounts of water and to determine crop water use with SDI. In 2007 a field study with corn was initiated that will be continued in 2008 and 2009. The treatments are:

  • Rainfed (no irrigation)
  • 0.50 ET (meet 50% of evapotranspiration requirements) throughout the season
  • 0.75 ET throughout the season
  • 1.00 ET throughout the season
  • no irrigation at first, 1.00 ET during 2 weeks around tasseling, then no more irrigation after that
  • 0.50 ET at first, 1.00 ET during 2 weeks around tasseling, then 0.50 ET after that
  • 0.50 ET at first, 1.00 ET during 3 weeks around tasseling, then 0.50 ET after that
  • 0.50 ET at first, 1.00 ET during 4 weeks around tasseling, then 0.50 ET after that
  • 0.75 ET at first, 1.00 ET during 4 weeks around tasseling, then 0.75 ET after that

Using SDI may not only increase water use efficiency, but also nutrient use efficiency when applying nutrients through the SDI system. This study was conducted at WCREC to assess the effect of different in-season nitrogen (N) application (via SDI) timings on corn production and residual soil nitrate-nitrogen (NO3-N). We evaluated the effect of three N application timing methods at two N application rates (UNL recommended rate and the UNL rate minus 20%) on corn grain, biomass yield, and end-of-study distribution of residual soil NO3-N.

In 2006, there were no significant differences in corn grain yields between the two N application rates. In 2007, the grain yield under the UNL recommended N rate was significantly higher (3.0 bu/ac) than under the UNL-minus-20% N rate. In both years, grain yield and biomass production for the N application timing treatments were not significantly different. The lack of response to different N application timing treatments indicates that there is flexibility in N application timing for corn production under SDI. This two-year field study was published in Soil Science.

Impact: This study helps us better understand the most appropriate times to apply N with SDI (underground fertigation). If applied at inappropriate times, nitrates are not used by the crop and may leach into groundwater. If N use is minimized, the producer's cost can be minimized.

Project Support n/a
Project Website
Report SDI_Corn_Yield.pdf
Current Status Completed
Topic Extension
Project's Primary Contact Information
Name Hergert, Gary
Unit Panhandle Research and Extension Center
Email ghergert1@unl.edu
Phone 308-632-1372
Web Page http://panhandle.unl.edu/personnel_hergert
Project Information
Title Panhandle Research and Extension Center
Other(s) Jim Schild, Interim Associate Director, jschild1@unl.edu; Steve Sibray, School of Natural Resources, ssibray1@unl.edu 
Description

The Panhandle Research and Extension Center, located in the heart of western Nebraska in Scottsbluff, houses 19 faculty with appointments in agriculture and family and consumer science through the University of Nebraska-Lincoln. Most of the faculty hold joint appointments in research and extension. The Cooperative Extension program in a 17-county area of the Panhandle and north-central Nebraska is also administered at the Center.

The University of Nebraska-Lincoln has had a presence in western Nebraska for over 85 years. In 1909, the University of Nebraska Experiment Station and the USDA jointly homesteaded a quarter section of land five miles east of Mitchell. Initial research was in the area of crop production under gravity irrigation. Research emphasis increased and soon included studies in sheep, swine, dairy, and beef production, in addition to many other crop areas. The 800 acre Experimental Range in Sioux County was deeded to the University of Nebraska by President Woodrow Wilson in 1918. Satellite agricultural laboratories at Alliance and Sidney, Nebraska were added in 1967. Through a fortunate set of circumstances, the headquarters of the Panhandle Station moved to the former Hiram Scott College campus after the state had acquired the property after the school closed in the early 1970s. The headquarters and surrounding research plots are located just north of the city of Scottsbluff. To reflect the University's involvement throughout the Panhandle, the name was officially changed to the Panhandle Research and Extension Center in 1985. The addition of the Learning Center, a joint effort of the Division of Continuing Studies and Cooperative Extension, in 1987 significantly enhanced the educational opportunities for western Nebraska residents.

Project Support Varies according to program and project - for more information see http://www.panhandle.unl.edu
Project Website http://www.panhandle.unl.edu
Report
Current Status Continuing
Topic Extension
Project's Primary Contact Information
Name Kranz, Bill
Unit Northeast Research and Extension Center
Email wkranz1@unl.edu
Phone 402-475-3857
Web Page
Project Information
Title Northeast Research and Extension Center - Haskell Agricultural Laboratory
Other(s) Charles Shapiro, Northeast Research and Extension Center, cshapiro1@unl.edu; Dave Shelton, Northeast Research and Extension Center, dshelton2@unl.edu; Sue Lackey, Conservation and Survey, slackey1@unl.edu; Terry Mader, Haskell Ag. Lab, tmader1@unl.edu 
Description

The role of the faculty and staff in this unit is to prevent or solve problems using research based information. Faculty and staff subscribe to the notion that their programs should be high quality, ecologically sound, economically viable, socially responsible and scientifically appropriate. Learning experiences can be customized to meet the needs of a wide range of business, commodity, or governmental organizations based upon the many subject matter disciplines represented. As part of the University of Nebraska, the Northeast Center faculty and staff consider themselves to be the front door to the University in northeast Nebraska. Through well targeted training backgrounds and continuous updating via the internet and other telecommunications technologies, faculty and staff have the most current information available to help their clientele.

The Haskell Ag. Lab is a University of Nebraska research farm located 1.5 miles east of the Dixon County Fairgrounds in Concord. This 320 acre farm was donated to the University of Nebraska by the C.D. Haskell family of Laurel in 1956. A number of demonstrations and projects are going on at the Haskell Ag. Lab, including a riparian buffer strip demonstration and a study to evaluate the effect of irrigation on soybean aphid population dynamics. Other studies focus on:

Subsurface Drip Irrigation: In the spring of 2007 a new subsurface drip irrigation system was installed on a 4 acre portion of the farm with sandy loam soils. The initial objective of the research is to collect field data to document crop water use rates for new corn varieties. Specifically, the work will concentrate on varieties that have different drought resistance ratings to improve the accuracy of the information provided to producers via the High Plains Regional Climate Center. In 2007, two varieties were planted and five irrigation treatments were imposed ranging from dryland to full irrigation. The data will also be used to develop improved local crop production functions for use in the Water Optimizer spreadsheet.

Hormones in Livestock Waste: This project will evaluate the fate of both naturally occurring and synthetic hormones that are associated with solid waste harvested from beef cattle feeding facilities. The research involves: 1) tracking the fate of hormonal compounds from the feedlot into surface run-off that would make its way into a liquid storage lagoon; 2) establishing stockpiled and composted sources of the solid manure removed from the feedlot; and 3) applying stockpiled and composted manure to cropland areas under different tillage systems and native grasses. Once the manure is applied the runoff potential will be evaluated using a rainfall simulator. Research will then focus on whether plants that could be a source of food for wildlife and/or domestic animals take up the hormones. (More information about this project is available; see projects listed under Dan Snow.)

Project Support Varies according to program and project - for more information see http://nerec.unl.edu/ Hormone Project funded by the U.S. Environmental Protection Agency
Project Website http://nerec.unl.edu/
Report
Current Status Continuous
Topic Extension
Project's Primary Contact Information
Name Melvin, Steve
Unit West Central Research and Extension Center
Email smelvin1@unl.edu
Phone 308-367-4424
Web Page http://www.frontier.unl.edu/
Project Information
Title Irrigation Strategies Field Tour Series
Other(s) Bill Kranz, Northeast Research and Extension Center, wkranz1@unl.edu; Charles Shapiro, Northeast Research and Extension Center, cshapiro1@unl.edu; Simon Van Donk, West Central Research and Extension Center, svandonk2@unl.edu; Derrel Martin, Biological Systems Engineering, dmartin1@unl.edu 
Description

The 2009 Irrigation Strategies Field Tour Series will focus on showing farmers and crop consultants management strategies to conserve water.

The tour topics, which vary by location, include: Water Resource Update; Comparing Irrigation Energy Sources: Costs and Emissions Requirements; Monitoring Crop Water Use and Soil Moisture Status - Simple, Durable, Accurate, and Economical Tools; Water Savings with Crop Residue Management; How the Amount of Water and Nitrogen Applied with a Center Pivot Affects Crop Yield; How to Get the Most from Your Nitrogen Dollar; Where Slow Release Nitrogen Fertilization Fits into Corn Production; Variable Rate Irrigation Equipment for Center Pivots; Predicting the Last Irrigation; and How Time of Application and Amount of Water Applied Affects Crop Yield.

In 2008 eleven field demonstrations, with thirteen field tours at the sites, were conducted around the state to teach irrigation options specifically adapted for Nebraska crops, soils, and irrigation issues. No-till water savings were shown at the Curtis site and at the Ainsworth site, and a demonstration showed producers how nitrogen losses due to drainage taking soluble nitrogen below the root zone can be prevented with correct water application.

The farmers participating in 2008 reported managing an average of 1,067 acres of irrigated cropland per farm. The average reported value of the knowledge gained by the producers completing the survey was $22,215 per operation. If this average was extended to all of the 160 producers attending, the value of the education gained would be more than $3.55 million per year. The reported potential water savings of 2.2 acre-inches/acre by the farmers would be a 15-20% savings from the typical irrigation water usage and if extended to the average farm size, would be more than 31,300 acre-feet/year. The other 40 people attending the tours also reported substantial knowledge gains that will help save water and increase returns per acre. Their occupations ranged from crop consultants, agri-business representatives, government agency personnel, etc. The acre influence/manage ranged from none to over 100,000 acres. This variation makes it difficult to determine the impact of their involvement, but it is very significant as well. For example, just the eight people that listed the acres they manage/influence (38,875 acres on average) and the value of the knowledge gained ($18.78/acre on average) would result in over $5.84 million per year.

Nine of the eleven irrigation demonstration sites were in farmer fields in 2008, and two were located on the NCTA farm. The plot locations included sites near Alma, Gothenburg, Axtell, Edison, Loomis, Ainsworth, Imperial, Benkelman, Upland, and Curtis (two sites). Two sites (Curtis and Loomis) had line-source sprinkler systems installed to demonstrate irrigation strategies for corn. All sites had soil-moisture-monitoring equipment and ET gauges installed for use at the field tours and to allow the producers and crop consultants to work with the equipment. The Ainsworth site demonstrated the relationship between varying amounts of nitrogen on irrigated corn. The data generated from the sites will also be used for Extension programs in the future.

Project Support U.S. Department of Interior - Bureau of Reclamation
Project Website http://water.unl.edu/irrigationtournews
Report
Current Status Continuing
Topic Extension
Project's Primary Contact Information
Name van Donk, Simon
Unit West Central Research and Extension Center
Email svandonk2@unl.edu
Phone 308-696-6709
Web Page http://westcentral.unl.edu/web/westcentral/svandonk
Project Information
Title West Central Research and Extension Center - Gudmundsen Sandhills Laboratory
Other(s) Jim Goeke, West Central Research and Extension Center, jgoeke1@unl.edu 
Description

The University of Nebraska West Central Research and Extension Center is a research and extension facility of the University of Nebraska Institute of Agriculture and Natural Resources (IANR). It serves as the site for field-based research and extension involving faculty and graduate students in eight IANR departments. West Central consists of approximately 1,800 acres of which 1,100 acres are in pasture with the remaining in dryland and irrigated cropping systems. West Central delivers research-based education and information to citizens throughout the state. Extension specialists and educators are committed to excellence, conducting educational programs customized to meet the needs of Nebraskans. These educational programs, delivered via a variety of methods, are offered through federal, state and county partnership arrangements and provide research-based information and other educational resources to the 20-county West Central district and beyond.

The Gudmundsen Sandhills Laboratory (GSL), a 13,000 acre working ranch in the Nebraska Sandhills, is also part of West Central. GSL is situated over a relatively small portion of the High Plains Aquifer where saturated thickness exceeds 1000 feet. GSL also features a valley with a live stream, a drained valley with wet meadows, an adjacent lake, dry valleys, and many dune types so that literally all the surface and groundwater locales in the Sandhills are represented and available for research. In 2004 a U.S. Climate Reference Network station was established at GSL to provide future long-term observations of temperature and precipitation accurate enough to detect present and future climate change.

Project Support Varies according to program and project - for more information see http://www.westcentral.unl.edu
Project Website http://westcentral.unl.edu/web/gudmundsen/
Report
Current Status Continuous
Topic Groundwater
Project's Primary Contact Information
Name Kranz, Bill
Unit Northeast Research and Extension Center
Email wkranz1@unl.edu
Phone 402-584-3857
Web Page http://bse.unl.edu/web/bse/wkranz1
Project Information
Title Demonstrate Improved Irrigation Scheduling and Nitrogen Management Practices
Other(s) Charles Shapiro, Agronomy and Horticulture, cshapiro1@unl.edu; Steve Melvin, Extension, smelvin1@unl.edu; Denny Bauer, dbauer1@unl.edu; Ralph Kulm, rkulm1@unl.edu. 
Description This three-year project demonstrates improved irrigation scheduling and nitrogen management practices. At the research site near Springview, soil water sensors, tipping bucket rain gauges and an ETgage have been installed. Sprinkler packages were changed to apply 10% more water or 10% less water than the farmer normally applies. Soil water sensors and tipping bucket rain gauges document the water applied; chlorophyll meter readings, plant samples, and hand picked yields are collected during the summer.
Project Support Bureau of Reclamation, Nebraska Environmental Trust
Project Website
Report
Current Status Continuing
Topic Groundwater
Project's Primary Contact Information
Name Swinehart, James B.
Unit School of Natural Resources
Email jswinehart1@unl.edu
Phone 402-472-7529
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=487
Project Information
Title Geology and Groundwater Supplies of Box Butte County, Nebraska
Other(s) Vernon L. Souders (project lead, retired); Frank A. Smith (retired), fsmith1@unl.edu 
Description

This report describes the relationship between the geology and the groundwater supplies in Box Butte County. It also evaluates the aquifers with respect to waterbearing characteristics and groundwater in storage. It further describes recharge to and discharge from the aquifers, outlines the movement of groundwater in the county, and summarizes the changes in groundwater storage that have occurred since the advent of irrigation in the county. Brief descriptions of the topography and drainage are included. An evaluation of climatic data for Box Butte County and the Nebraska Panhandle is incorporated into this report and several observations are made about climate in relation to groundwater and the irrigation requirements of crops. Brief mention is made of the soils and agricultural activity in the county.

The report estimates that to date (1975-1976) the amount of groundwater in storage has decreased 2-3% since 1938 and perhaps 1/2 of this decrease has occurred since 1964. The most serious water level declines were immediately north of Alliance in an area where the groundwater resource is large. This area had the highest concentration of irrigation wells and is also the oldest irrigated part of the county.

The report explicitly does not answer the question, "How long will the water supply last?" Rather the authors make the point that economic considerations and social attitudes are just as important as the characteristics of local groundwater supplies in answering that question.

Project Support Upper Niobrara White Natural Resources District, U.S. Geological Survey
Project Website
Report WSP-47.pdf
Current Status Test Holes Drilled Fall 1975-Spring 1976, Report Published 1980. An electronic copy of the report is available above; A hard copy is available via Nebraska Maps and More
Topic Hydrology
Project's Primary Contact Information
Name Ayers, Jerry
Unit School of Natural Resources
Email jayers1@unl.edu
Phone 402-472-0996
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=5
Project Information
Title Box Butte County / Niobrara River Numerical Groundwater Flow Model Studies
Description

The main objective of these studies was to determine the effect, if any, of large-scale regional pumping on the base flow of the Niobrara River. One study involved the construction and implementation of a groundwater-flow model for Box Butte County and the surrounding region to simulate hydrogeologic and hydraulic conditions, including groundwater extraction by large-capacity wells. The other study focused on the upper reaches of the Niobrara River to obtain estimates of stream-bed hydraulic conductivity (i.e., the ease with which water can move through pore spaces or fractures in the stream-bed) to be used as input to the modeling effort.

The groundwater-flow model was calibrated to predevelopment by primarily adjusting recharge flux through a trial-and-error process until a reasonable fit was obtained to the observed water table configuration of 1938. Once calibrated to predevelopment heads, transient simulations (i.e., simulations taking into account real-life conditions, thus modeling potential real-life changes in the basin), were run to model the change in heads due to pumping for the time period between 1938 and 2005. Results from these simulations were compared with observed heads for available years. After satisfactory results were obtained from the transient simulations, two additional scenarios were tested. These were simulations where all wells were turned off and where only those wells in Box Butte County and its proximity were active. The computer program ZONEBUDGET, which computes the water budget for user-defined zones, was run coincident with all simulations. Both head and water budget computation results were then used to determine the effect of pumping on the base flow the Niobrara River.

Based on model results, reductions in the base flow of the Niobrara River is due primarily to localized pumping effects, rather than from groundwater extraction on a regional scale. A comparison of simulated outflow values for selected reaches of the Niobrara River indicates that 1) flow characteristics in the uppermost part of the basin did not change greatly over the period of pumping indicating that base flow is not significantly reduced by large-scale pumping, 2) significant changes in base flow appear to have occurred after about 1960 in the middle and lower reaches, 3) the maximum change in flow for the middle reach due to all wells pumping is 19.6% and only 4.4% for Box Butte wells, with both maximum reductions occurring at the end of the 2005 pumping season, 4) the maximum change in flow for the lower reach is about 24.4% for all wells and only 2.5% for Box Butte wells, again, both occur at the end of the 2005 pumping season. Overall, the Niobrara River appears to be a gaining stream along most of its flow path, with the exception of the uppermost part of the basin.

The conclusion is that the affects of large-scale regional pumping appears to not impact base flow in the Niobrara River to any significant degree. Rather, localized pumping, especially where irrigation wells are situated near the river, reduces base flow on the order of 20% to 25%. For the most part, the Niobrara River valley is somewhat isolated from the extensive pumping taking place in Box Butte County. The upper reach is sufficiently distant from the pumping center that the cone of depression has little effect on the water table. Much of the middle reach transects units of the White River group that are considered to be nearly impermeable, and thus, provide a hydrogeologic barrier, preventing the northward expansion of the cone of depression. Pumping along the lower reach of the Niobrara River has a much greater influence on base flow reduction simply due to the proximity of the extraction wells to the river.

Project Support Nebraska Department of Natural Resources
Project Website http://www.dnr.state.ne.us/Publications_Studies/Box-Butte_ModelProjectCompletionReport.pdf
Report
Current Status Completed
Topic Hydrology
Project's Primary Contact Information
Name Lenters, John
Unit School of Natural Resources
Email jlenters2@unl.edu
Phone 402-472-9044
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=743
Project Information
Title On Basin Residence Time and Annual Hydrology: Development of Annual Hydrology Model of the Sandhills Rivers
Other(s) Erkan Istanbulluoglu, University of Washington, erkani@u.washington.edu; Durelle Scott, Virginia Tech, dscott@vt.edu; Tiejun Wang, University of Washington-Seattle, tjwang@u.washington.edu 
Description

Simple models of annual and mean annual basin runoff and evapotranspration, such as the one proposed by Budyko, are useful for investigating the relationship between river flow and climate, and planning water storage structures in basins where long term streamflow measurements are not available. Such models are often based on the assumption that annual precipitation is in balance with annual runoff and evapotranspiration, and change in water storage of the basin is negligible. In basins where groundwater is the dominant source of streamflow this assumption hardly holds.

In this study first we develop a technique to investigate groundwater residence time to identify time scales over which a simple model of mean annual runoff can be meaningfully used. The model is applied in the Niobrara and Loup Rivers. Second we develop an annual hydrology model by solving the rate of change in basin storage. The runoff component of the model is based on the well-known linear reservoir model and a parameterization to characterize runoff on saturated areas. River water storages and streamflow diverted for irrigation are included as inputs in the model. The model explained as high as 80% of the annual variability of runoff in the Niobrara River at the Sparks gage. The model underscores the importance of saturation overland flow in the basin. Finally we used the model to investigate climate change scenarios, including extreme dry and wet conditions, as well as scenarios for the Medieval Warm Period during which Sandhills were destabilized as suggested by geological evidence.

Project presentation at the 2008 Water Colloquium

Project Support National Science Foundation
Project Website
Report Lenters_Groundwater.pdf
Current Status Published "On the role of groundwater and soil texture in the regional water balance: An investigation of the Nebraska Sand Hills", USA, Water Resour. Res., 45, W10413, doi:10.1029/2009WR007733.
Topic Hydrology
Project's Primary Contact Information
Name Pederson, Darryll
Unit Earth and Atmospheric Sciences
Email dpederson2@unl.edu
Phone 402-472-7563
Web Page http://eas.unl.edu/people/faculty_page.php?lastname=Pederson&firstname=Darryll&type=REG
Project Information
Title Waterfalls on the Niobrara River's Spring-fed Tributaries
Description The waterfalls on the spring-fed tributaries of the Niobrara River downstream from Valentine, Nebraska are unique in that the waterfalls are convex downstream. Groundwater discharge on either side of the waterfalls has led to significant weathering because of freeze/thaw cycles in the winter and wet/dry cycles in the summer. The water falling over the face of the falls protects them from the two weathering processes. Because the weathering rates on either side are higher than the erosion rates from falling water, the face of the falls is convex downstream. Similar waterfall face morphology occurs on the Island of Kauai where the main weathering processes are driven by vegetation and the presence of water.
Project Support National Park Service through the Great Plains Cooperative Ecosystem Studies Unit
Project Website http://snr.unl.edu/gpcesu/Project_library.htm
Report Waterfalls_Abstract.pdf
Current Status Completed
Topic Hydrology
Project's Primary Contact Information
Name Rundquist, Donald
Unit Center for Advanced Land Management Information Technologies
Email drundquist1@unl.edu
Phone 402-472-7536
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=103
Project Information
Title Nebraska Airborne Remote Sensing Program
Other(s) Rick Perk, CHAMP Project Manager, rperk1@unl.edu; Anatoly Gitelson, gitelson@calmit.unl.edu; Sunil Narumalani, sunil@calmit.unl.edu; Merlin Lawson, mlawson@calmit.unl.edu 
Description

CALMIT has joined forces with the UNL Department of Electrical Engineering and the UNO Aviation Institute to develop an aerial remote sensing research platform known as the Nebraska Airborne Remote Sensing Program (NARSP). A specially modified Piper Saratoga aircraft is being used as the base platform for deployment of a number of research grade remote sensing instruments. CALMIT's airborne remote sensing activities are centered around a suite of instruments associated with an AISA Eagle hyperspectral imaging system. This specific program is identified as CALMIT Hyperspectral Aerial Monitoring Program (CHAMP).

This technology has contributed to several projects:

  • To determine the condition and monitor the changing quality of Nebraska's 2500+ lakes and ponds - funded by the Nebraska Department of Environmental Quality and the U.S. Environmental Protection Agency.
  • To conduct a retrospective assessment of several different remote sensing platforms, with an emphasis on those remote sensing methods (e.g., airborne, Landsat, MODIS and MERIS) that most likely can be used for monitoring lakes routinely and operationally over a regional spatial extent - in collaboration with the North American Lake Management Society and the Universities of Minnesota and Wisconsin
  • To conduct remote sensing of coral communities.
  • To identify and delineate areas of noxious weeds and invasive species by using satellite imagery, hyperspectral aerial imagery, and GPS technology to aid in inventory surveys and mapping of these areas and assess the effectiveness of ongoing weed management actions.
  • To use airborne and satellite remote sensing systems to investigate and improve approaches to managing wheat streak mosaic (WSM), the most severe disease of winter wheat in the Great Plains.
Project Support Platform Development - National Science Foundation, National Aeronautics and Space Administration; specific project support noted above when possible.
Project Website calmit.unl.edu/champ/index.php
Report
Current Status Continuous
Topic Hydrology
Project's Primary Contact Information
Name Wang, Tiejun
Unit School of Natural Resources
Email tiejunwang215@yahoo.com
Phone
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=945
Project Information
Title Niobrara River Flow Variability
Other(s) Erkan Istanbulluoglu, University of Washington, erkani@u.washington.edu 
Description This project develops a database for hydrological and climatological variables within the Niobrara River basin so that researchers may study flow variability in the Niobrara River and its historical changes. Analysis includes all existing and discontinued streamflow gages within the system. Surface water diversion data are also collected to relate to changes in the flow discharge. Annual water yield of the river is studied at Sparks and Verdel gages. A lumped annual water yield model is developed to identify the natural variables that control runoff. The model uses annual runoff as forcing variable, as well as water diversions as outflux from the system. The model is currently being extended to monthly time scales.
Project Support Nebraska Game and Parks Commission, National Park Service
Project Website
Report
Current Status Underway
Topic Invasive Species
Project's Primary Contact Information
Name Allen, Craig
Unit Nebraska Cooperative Fish and Wildlife Research Unit
Email callen3@unl.edu
Phone 402-472-0229
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=647
Project Information
Title Monitoring, Mapping and Risk Assessment for Non-Indigenous Invasive Species in Nebraska
Other(s) Karie Decker, Nebraska Invasive Species Project Coordinator, invasives@unl.edu 
Description

Biological invasions are a growing threat to both human enterprise and ecological systems. This project provides resources to the public and private sector on: 1) the potential spread and impact of non-indigenous species in Nebraska; 2) actual and potential maps of non-indigenous species range (habitat specific maps at high resolution); 3) information regarding identification and management of potential invaders; 4) centralized information on management and impacts and potential spread of currently established non-indigenous species (a web portal); and 5) outreach within Nebraska to county-level governments and individual stakeholders regarding the management, surveillance and control of non-indigenous species. On February 7-8, 2008 a conference on non-indigenous species impacts, spread and management was held, focusing on state-of-our-knowledge and coordination of disparate management and information-provisioning efforts with a goal towards unification of disparate efforts.

This project is meant to build momentum towards a cohesive non-indigenous species biosecurity and management system in Nebraska that is integrated and relatively seamless across institutional boundaries. Spatially - based risk assessments that focus on non-indigenous invasive species impacts on at - risk native species and communities in Nebraska have been initiated with funding from the U.S. Geological Survey and the Nebraska Game and Parks Commission. The results and predictive models generated by this project will be delivered and made widely available to policy makers, management practitioners and landowners in Nebraska. Additional general information about potential invasive species and their impacts will be made easily accessible. Most of the goals listed above will produce and disseminate products that are dynamic, with interactive elements for the public and managers, including mapping of habitat-specific current and potential distributions of invasive species as well as a portal through which the public can inform the entities responsible for management of invasive species occurrence and spread - and vice versa.

Project Support U.S. Geological Survey, Nebraska Game and Parks Commission, Nebraska Environmental Trust
Project Website http://snr.unl.edu/invasives
Report
Current Status Continuing
Topic Invasive Species
Project's Primary Contact Information
Name Narumalani, Sunil
Unit School of Natural Resources
Email snarumalani1@unl.edu
Phone 402-472-9842
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=85
Project Information
Title Predicting Potential Occurrence and Spread of Invasive Plant Species along the North Platte River, Nebraska
Other(s) Justin D. Hoffman; Deepak R. Mishra, University of New Orleans, dmishra@uno.edu; Paul Merani; Robert G. Wilson, Panhandle Research and Extension Center, rwilson1@unl.edu 
Description

Riparian habitats are important components of an ecosystem; however, their hydrology combined with anthropogenic effects facilitates the establishment and spread of invasive plant species. Researchers used a maximum-entropy predictive habitat model, MAXENT, to predict the distributions of five invasive plant species (Canada thistle, musk thistle, Russian olive, phragmites, and saltcedar) along the North Platte River in Nebraska. Projections for each species were highly accurate. Researchers studied a 1-mile wide buffer on either side of the North Platte River channel from the Wyoming-Nebraska state line to approximately 3.2 km west of North Platte. Field work was conducted in September 2005, March 2006, and May 2007.

Researchers found different distribution patterns among the species. Russian olive and thistles closely resembled each other in extent and variable contribution. While conducting field work, researchers repeatedly documented thistles below Russian olives or in close proximity. In addition, both species were commonly documented at varying distances from the river. Conversely, researchers found phragmites and saltcedar to have a more restricted potential distribution. Saltcedar was common throughout most of the study area except in the extreme eastern parts. The eastern edge of the study area approaches the distribution limit of saltcedar in Nebraska (Kaul et al. 2006; Wilson and Knezevic 2006). Phragmites was common in the eastern parts of the study area; however, there was low to no probability of phragmites occurrence in the west. Potential suitable habitat diminished just west of Lake MaConaughy, suggesting researchers have identified the western distributional limit of phragmites on the North Platte River and in Nebraska.

Variable contribution among all species was similar, with elevation and distance from river as the two most important variables for all species. The most probable underlying variable explaining the significance of distance from river is soil moisture. In most cases soil moisture will decrease as distance from river increases. Although soil moisture may be more directly responsible for the observed plant distributions, this variable is not easily estimated over large areas, unlike distance from river. There was a large disparity of elevation in the study area. The importance of elevation may be the result of the locations of the survey sites, underlying mechanistic variables, or both. Collection sites occurred at the elevational extremes. For Russian olive, thistle, and saltcedar, the lack of presence data at median elevations most likely caused MAXENT to weight that variable higher than others. The predictive model of phragmites also determined elevation to be the most important variable. Unlike the other species, no phragmites was documented at the western site. It is possible that phragmites can not survive at higher elevations because of colder temperatures found at these sites. However, Saltonstall (2002) found invasive haplotypes of phragmites occurring at high elevations in Wyoming and Utah, which does not support the previous hypothesis. A more likely explanation is that phragmities is in the process of expanding its range westward on the North Platte River and has not had enough time to disperse to the western parts of the river.

The results of this study have management implications for these species along the North Platte River, as well as other river ecosystems. For example, the variables used in this study resulted in excellent predictions of the distributions of invasive plants. As mentioned above, some of these variables (i.e., elevation and distance from river) may have underlying mechanistic factors that are more accurate measures of plant distributions. However, one of the utilities of the current approach is that these variables are easy to access and generate in a geographic information systems environment and useful predictions can be derived, which is not the case for some of their potential underlying factors. Also, predictive modeling shows limited areas of suitable habitat in the western parts of the North Platte River, primarily along the river channel. Researchers suggest that extensive monitoring be conducted in these areas to identify any populations that may occur there. Identification and control of these populations will significantly slow or stop the westward spread of phragmites. Also, any populations of phragmites that occur in the west should be relatively small and isolated making control of these populations more feasible. Similarly, abundances of saltcedar decreased in the eastern parts of the North Platte River. As with phragmites in the west, a control strategy should be used for saltcedar while populations are small and manageable. In addition, both species were found to occur close to the river bed, thus by monitoring the riverbanks and sandbars, the majority of populations could be identified within a very limited search area. Russian olive and thistles occur throughout the study area. Researchers suggest that control of these species should take place in areas with high probability of occurrence to prevent establishment of monotypic stands of each species.

Project Support U.S. Department of Agriculture - Animal and Plant Health Inspection Service
Project Website
Report Narumalani_Invasive.pdf
Current Status Published in Invasive Plant Science and Management 2008 1:359-367
Topic Invasive Species
Project's Primary Contact Information
Name Narumalani, Sunil
Unit School of Natural Resources
Email snarumalani1@unl.edu
Phone 402-472-9842
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=85
Project Information
Title Detecting and Mapping Four Invasive Species along the Floodplain of North Platte River, Nebraska
Other(s) Deepak R. Mishra, University of New Orleans, dmishra@uno.edu; Robert G. Wilson, Panhandle Research and Extension Center, rwilson1@unl.edu; Patrick Reece, Panhandle Research and Extension Center, preece1@unl.edu; Ann Kohler 
Description

This research focused on the dominant invasive plant species in Nebraska, including saltcedar, Russian olive, Canada thistle, and musk thistle. Once established, these invasive species can have several harmful effects, such as increasing (1) soil salinity, which reduces productivity of native plants and results in the loss of natural habitat (Pimentel et al. 2000); (2) soil water consumption to such an extent that it can dry up streams and reduce water levels of rivers and lakes (Friederici 1995); (3) risk of wildfires during summer (Brooks et al. 2004); and (4) chances of flooding during high-intensity rainfall by impeding stream flow (Zavaleta 2000).

The study area was a corridor approximately 1.6 km wide and 257 km long located along the North Platte River starting at the Wyoming/Nebraska border and ending at Kingsley Dam on Lake McConaughy. The elevation ranges from 1,244 m above sea level at the Wyoming/Nebraska state line to 943 m, in an area below Kingsley Dam. The Platte River is generally considered to be a braided river with a network of small channels separated by large and small islands and sandbars. It has been noted that historically the banks of the Platte River were rarely covered with trees but instead with grasses and sedges (Farrar 1983; Kuzelka et al. 1993). Some of the islands were wooded, and willows (Salix exigua) and cottonwood (Populus deltoids) trees were observed. In the 1930s, Russian olive was introduced into the region for conservation plantings. It has rapidly spread along the Platte River, replacing willows and cottonwoods. More recently, saltcedar has also invaded the study area from the west and, along with Russian olive, occupies riverbanks, sandbars, and islands. Saltcedar seedlings are tolerant of shade and thrive in a variety of soil and moisture conditions, but especially saline soils.

When examined from a comprehensive perspective for the entire study area (22 flight lines) from the Nebraska/Wyoming Border to Kingsley Dam, invasive plants covered an area of 139,632 ha, of which 1,965 hectares (2% of the total area) were identified as saltcedar and 1,478 hectares (1.1% of the total area) as Russian olive. The three mixed classes occupied approximately 5% of the total area. These numbers indicate the severity of invasion of nonnative species along the North Platte River. Nonnative species such as saltcedar have been known to consume large quantities of water, and because western Nebraska is frequently affected by drought, mapping and monitoring their spread along the river corridor can aid in the implementation of biological, mechanical, chemical, or some combination of these control mechanisms to minimize the effects on water resources.

Effective control and management of an invasive species begins with its detection and inventory. The ability to detect invasive plants with the use of remotely sensed data has improved with new sensors, enhanced technology (e.g., hyperspectral), and innovative image processing techniques. However, datasets that have the highest likelihood of detecting invasive plants come with high fiscal and technical considerations. When compared with low-resolution multispectral data, airborne hyperspectral data is most appropriate for detecting subtle changes in the reflectance properties of various vegetation species present in the landscape (Narumalani et al. 2006).

Project Support n/a
Project Website http://snr.unl.edu/invasives/file/northplatte_sunil_deepak.ppt
Report Narumalani_Platte.pdf
Current Status Published in Weed Technology 2009 23:99-107
Topic Recreation
Project's Primary Contact Information
Name Laing, Kim (Graduate Student)
Unit School of Natural Resources
Email kmeuhe1@unl.edu
Phone n/a
Web Page
Project Information
Title Assess Extent of Disturbance by Canoeists in Tributaries to the Niobrara National Scenic River
Other(s) Kyle Hoagland, School of Natural Resources, khoagland1@unl.edu 
Description

The Niobrara is a rich and unique ecosystem. Because it is relatively swift and shallow along this reach, the Niobrara is also a popular locale for tens of thousands of canoeists each year. Frequent bottom trampling and bank destabilization can result in a variety of short and long-term changes, including bottom substrate degradation, higher levels of drift including premature drift of aquatic larvae, increased turbidity and sedimentation, and the elimination of sensitive species.

The overall goal of this project is to assess the extent of disturbance by canoeists in tributaries to the Niobrara National Scenic River and its overall impact on stream ecosystem health. This assessment will be used to evaluate resource management practices in these unique habitats, while also serving as a basis for future comparisons to assess habitat degradation.

Ten tributaries, located along the south side of the Niobrara River, were sampled each month May through September. The tributaries were divided into five streams that were potentially impacted from visitors, located upstream, and five streams that were known to have no visitors. A mini-surber sampler was used to collect invertebrates from upstream sections of the tributaries (above the waterfalls with no visitors) and from downstream sections, below the waterfalls. Current velocity, depth, width, and distance from the edge of the tributary were recorded at each location. Water temperature, pH and conductivity were measured and a water sample taken to measure total nitrogen, total phosphorus and turbidity. In June, July and August visitor information was collected by volunteers at each potentially impacted tributary. Each volunteer counted the number of times the tributary was disturbed. This information, along with daily visitor use collected by Fort Niobrara, U.S. Fish and Wildlife Service, was used to calculate the amount of disturbance occurring at each location.

Project Support n/a
Project Website
Report
Current Status Completed
Topic Recreation
Project's Primary Contact Information
Name Shultz, Steve
Unit UNO Real Estate Research Center
Email sshultz@mail.unomaha.edu
Phone 402-554-2810
Web Page http://cba.unomaha.edu/dir/HomePageBio.cfm?id=347
Project Information
Title Economic and Social Values of Recreation on the Niobrara National Scenic River
Description

The goal of this project is to generate objective and accurate economic data and analyses that will allow the State of Nebraska to evaluate an in-stream appropriation on the Niobrara River for recreation purposes. Nebraska in-stream flow laws and regulations as stated in statute 46-2,116 specify that an in-stream appropriation must be in the public interest on the basis of:

  • The econmic, social, and environmental value of the in-stream use or uses including, but not limited to, recreation, fish and wildlife, induced recharge for municipal water systems, and water quality maintenance; and
  • The economic, social, and environmental value of reasonably foreseeable alternative out-of-stream uses of water that will be foregone or accorded junior status if the appropriation is granted.

The economic value of in-stream uses for recreation will involve estimates of both direct expenditures by river recreationists and the value of their use of the Niobrara Scenic River for boating and tubing using a travel cost model. The economic value of reasonably forseeable alternative out-of-stream uses will be determined by estimating the change in economic value of irrigation in the Niobrara River watershed based upon agricultural land sales from 2000 to 2007. The societal values associated with in-stream flows of and recreation on the Niobrara River will also be calculated using a telephone survey.

Project presentation at the 2008 Water Colloquium

Project Support Nebraska Game and Parks Commission
Project Website
Report Niobrara_Values.pdf
Current Status Completed
Topic Sandhills Studies and Modeling
Project's Primary Contact Information
Name Awada, Tala
Unit School of Natural Resources
Email tawada2@unl.edu
Phone 402-472-8483
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=4
Project Information
Title Soil Moisture Use by Grasses and Trees in the Sandhills
Other(s) Kathleen Eggemeyer, Texas State University, keggemeyer@txstate.edu; Ed Harvey, School of Natural Resources, feharvey1@unl.edu; David Wedin, School of Natural Resources, dwedin1@unl.edu; Xinhua Zhou, School of Natural Resources, xzhou2@unl.edu; C. William Zanner, University of Minnesota, bzanner@umn.edu 
Description

The Sandhills are well known as Nebraska's grassland region. The continued presence of relatively shallow-rooted grasses in the Sandhills have contributed to making this region a major recharge zone for the High Plains Aquifer. Unfortunately, trees are encroaching on the Sandhills, potentially threatening the region's recharge capacity.

This study was conducted in the Nebraska National Forest at Halsey (located in Blaine and Thomas counties). Researchers established a network of soil moisture monitoring sites to observe how relatively shallow-rooted grasses (i.e., little bluestem and switchgrass) and deep-rooted trees (i.e., ponderosa pine and eastern red cedar) deplete soil moisture at depths up to 10 feet. The study confirmed that both grasses use mostly shallow soil water. Deeper switchgrass roots may serve as an important survival mechanism for the plant during drought, but overall switchgrass's deep roots contribute only a small fraction to the plant's total water uptake.

On the other hand, the study showed that both trees "exhibited significant plasticity in sources of water uptake." During winter both trees drew soil water from below 0.9 m depth and in spring from the upper soil profile (0.05 - 0.5 m). During the growing season (May-August), the pine drew water mostly from the upper and mid soil profiles (0.05 - 0.5 and 0.5-0.9 m). The cedar gradually moved from the upper to the mid soil profile, thus being less responsive to precipitation but taking advantage of available soil moisture.

Overall the study showed that ponderosa pines and eastern red cedars have been able to encroach into the Sandhills because the trees "acquired water outside of the growing season, competed for shallow water with grasses during spring and early summer, and depended on water drawn from deeper in the soil profile during drought."

For more information about this topic, see David Wedin's presentation, "Was Weaver Wrong? Rooting Depths and Soil Moisture Depletion in the Nebraska Sandhills".

Project Support McIntire Stennis Forest Research Funds - USDA, Interdisciplinary Research Grant, ARD-University of Nebraska-Lincoln, Center for Great Plains Studies, UNL Water Sciences Lab, US Forest Service
Project Website
Report Awada_Sandhills.pdf
Current Status Published in Tree Physiology 29:157-169
Topic Sandhills Studies and Modeling
Project's Primary Contact Information
Name Billesbach, Dave
Unit Biological Systems Engineering
Email dbillesbach1@unl.edu
Phone 402-472-7961
Web Page http://bse.unl.edu/faculty/Billesbach.shtml
Project Information
Title Effects of Precipitation and Groundwater on Grassland Productivity in the Nebraska Sand Hills
Other(s) Tim Arkebauer, Agronomy and Horticulture, tarkebauer1@unl.edu 
Description

In the Sand Hills the depth to groundwater greatly affects the types and amounts of grasses that grow there, suggesting a strong linkage between groundwater, precipitation, and grass productivity. Wet meadows are where the water rable is usually less than a meter below the surface and make up about 10% of the Sand Hills land area. Dry valleys are where the water table never intersects the land surface and usually lies several meters below; dry valleys also make up about 10% of the Sand Hills land area. Except for lakes and wetlands (about 2% of the land area), the rest of the Sand Hills is dunal uplands where the water table is many meters below the surface.

It has long been assumed that the Sand Hills are a recharge zone for the underlying aquifer and that local precipitation more than accounts for the water usage of surface vegetation. This research measures how much water enters the Sand Hills ecosystem (via precipitation) and how much water leaves the land surface - the Sand Hills surface water balance. Research shows that Sand Hills surface water is lost primarily through evapotranspiration, or surface water evaporation and plant transpiration, with the relative size of each varying greatly depending on the time of year and other factors, such as drought. Research also shows that: 1) the most water is transferred to the atmosphere from wet meadows, followed by dry valleys and dunal uplands; 2) the close proximity to the aquifer acts as a buffer to both wet meadows and dry valleys, but not to dunal uplands; and 3) groundwater buffering is most affected by regional rather than local precipitation events. The long-term goal of this project is to study and better understand the relationship between water and the vegetative land cover (carbon).

Project Support n/a
Project Website
Report Billesbach_SandHills_Water.pdf
Current Status Continuing
Topic Sandhills Studies and Modeling
Project's Primary Contact Information
Name Efting, Aris
Unit School of Natural Resources
Email aefting@unl.edu
Phone 402-472-3471
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=226
Project Information
Title Determining Toxic Algal Bloom Frequency in Nebraska Lakes
Description Research has been conducted in the Sandhills to determine whether or not there has been an increase in toxic algal blooms. Four different lakes were cored to identify the lakes' history of toxic algal blooms and determine whether there is an increase in toxin concentrations post 1950.
Project Support Layman Fund
Project Website
Report
Current Status Underway
Topic Sandhills Studies and Modeling
Project's Primary Contact Information
Name Hu, Qi (Steve)
Unit School of Natural Resources
Email qhu2@unl.edu
Phone 402-472-6642
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=54
Project Information
Title The Missing Term in Surface Water Balance in the Great Plains
Other(s) Jinsheng You, School of Natural Resources, jyou2@unl.edu 
Description

It has been recognized that the surface water budget derived from the NCEP-NCAR Reanalysis and other existing climatic datasets is not in balance in the Great Plains region. This imbalance is shown by large surface evaporation which cannot be supported by source terms in the budget equation. This large surface evaporation is always appearing in calculations from the surface and soil moisture conditions specified in those datasets. This imbalance poses serious uncertainties to diagnostic and modeling studies of energy and carbon balances and to our understanding of atmospheric/climatic processes in this region. An effort aiming at identifying sources causing the water budget imbalance has been underway and some preliminary results have been obtained. A main source of the imbalance arises from the calculation of the surface evaporation. It was found that the surface and soil water specified in those datasets (developed from integrations of both observations and model simulations) is biased because of inaccurate descriptions of the soil properties, particularly the sandy soils in the Nebraska Sand Hills. A revised model with more accurate descriptions of the soils and soil hydrology in the Sand Hills has produced a balance surface water budget in the Sand Hills.

Project presentation at the 2008 Water Colloquium

Project Support Department of Commerce - National Oceanic and Atmospheric Administration (NOAA)
Project Website
Report
Current Status
Topic Sandhills Studies and Modeling
Project's Primary Contact Information
Name Hubbard, Kenneth
Unit High Plains Regional Climate Center
Email khubbard1@unl.edu
Phone 402-472-8294
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=55
Project Information
Title Assessment of Soil Moisture Dynamics of the Nebraska Sandhills Using Long-Term Measurements and a Hydrology Model
Other(s) Venkataramana Sridhar; David Wedin, School of Natural Resources, dwedin1@unl.edu 
Description Soil moisture, evapotranspiration, and other major water balance components were investigated for six Nebraska Sandhills locations during a 6 year period (1998-2004) using a hydrological model. Annual precipitation in the study period ranged from 330 to 580 mm. Soil moisture was measured continuously at 10, 25, 50, and 100 cm depth at each site. Model estimates of surface (0-30 cm), subsurface (30-91 cm), and root zone (0-122 cm) soil moisture were generally well correlated with observed soil moisture. The correlations were poorest for the surface layer, where soil moisture values fluctuated sharply, and best for the root zone as a whole. Modeled annual estimates of evapotranspiration and drainage beneath the rooting zone showed large differences between sites and between years. Despite the Sandhills' relatively homogeneous vegetation and soils, the high spatiotemporal variability of major water balance components suggest an active interaction among various hydrological processes in response to precipitation in this semiarid region.
Project Support National Science Foundation, High Plains Regional Climate Center
Project Website
Report Hubbard06.pdf
Current Status Published in Journal of Irrigation and Drainage Engineering, September/October 2006, 463-473
Topic Sandhills Studies and Modeling
Project's Primary Contact Information
Name Loope, David
Unit Earth and Atmospheric Sciences
Email dloope1@unl.edu
Phone 402-472-2647
Web Page http://eas.unl.edu/people/faculty_page.php?lastname=Loope&firstname=David&type=REG
Project Information
Title Large Wind Shift on the Great Plains During the Medieval Warm Period
Other(s) Venkataramana Sridhar; James Swinehart, School of Natural Resources, jswinehart1@unl.edu; Joseph Mason, University of Wisconsin, Madison, mason@geography.wisc.edu; Robert Oglesby, School of Natural Resources, roglesby2@unl.edu; Clinton Rowe, Geosciences, crowe1@unl.edu 
Description Spring-Summer winds from the south move moist air from the Gulf of Mexico to the Great Plains. Growing season rainfall sustains prairie grasses that keep large dunes in the Nebraska Sandhills immobile. Longitudinal dunes built during the Medieval Warm Period (800-100 yBP) record the last major period of sand mobility. These dunes are oriented NW-SE and are composed of cross-strata with bi-polar dip directions. The trend and structure of these dunes directly record a prolonged drought that was initiated and sustained by a historically unprecedented shift of Spring-Summer atmospheric circulation over the Plains: southerly flow of moist air was replaced by dry southwesterly flow.
Project Support National Science Foundation
Project Website
Report Loope Wind Shift.pdf
Current Status Published in Science November 2007 318:1284-1286
Topic Sandhills Studies and Modeling
Project's Primary Contact Information
Name Wedin, Dave
Unit School of Natural Resources
Email dwedin1@unl.edu
Phone 402-472-9608
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=128
Project Information
Title Sand Hills Biocomplexity Project
Other(s) Vitaly Zlotnik, Department of Geosciences, vzlotnik1@unl.edu. 
Description

The Sand Hills, the largest sand dune area in the Western Hemisphere, is now stabalized by native grasses. This was not always the case. The Sand Hills have mobilized several times over the last 10,550 years. Major droughts destabilized significant portions of the Sand Hills as recently as 1000 years ago. The stability of the Sand Hills affects not only hundreds of cattle ranches, but also the recharge of the High Plains Aquifer. Of the total groundwater stored in this vast aquifer, 65% occurs in Nebraska and over half of that lies under the Sand Hills. The groundwater connection is obvious throughout the region. Due to the high water table, interdunal valleys in portions of the Sand Hills contain extensive complexes of lakes, wetlands, and naturally sub-irrigated wet meadows, which together cover over 10% of the landscape.

The Sand Hills Biocomplexity Project is a major federal project led by Professor Wedin. The project is aimed at testing whether:

  1. Evapotranspiration (ET) from wet valleys buffers the impacts of short-term drought on upland grasslands through local climate feedbacks. (resistance stability)
  2. When wetlands go dry, the combined effect of lost upland grass cover and lost wetland ET creates a desertification feedback that amplifies drought impacts.
  3. Since subregions of the Sand Hills differ in their extent of interdunal wetlands, subregions respond differently to paleo and historic droughts, thus enabling landowners to prepare for future droughts.
  4. Increased groundwater recharge when dunes are bare hastens the rise of groundwater levels, which, together with the rapid recovery of warm season grasses, restabilizes the dunes. (resilience stability)

The project's Grassland Destabilization Experiment (GDEX) is studying what happens to a Sand Hills dune when the vegetation dies. Researchers have created 10 circular plots at the Barta Brothers Ranch, each 120 meters in diameter, and used herbicide to kill all the vegetation on several of them. The plots are kept clear of vegetation, so that information on vegetation coverage, root mass, soil organic matter, and sand movement may be monitored and recorded to determine the stability of the plots. Results indicate that the Sand Hills may be more stable than previously thought; that is, ersosion is just starting to occur were vegetation was killed two years ago. Additional studies are needed to determine what happens when sand dunes become mobile.

As a part of this project, Professor Vitaly Zlotnik carries out research on groundwater recharge, hydraulic properties of the dune cover, and the climate change effects on groundwater recharge.

Project Support National Science Foundation
Project Website http://sandhills-biocomplexity.unl.edu/
Report
Current Status n/a
Topic Survey
Project's Primary Contact Information
Name Joseph Hamm
Unit jhamm2@nebraska.edu
Phone 402-472-5678
Web Page http://ppc.unl.edu/
Project Information
Title Platte River Habitat Partnership Survey
Other(s) Lisa Pytlik Zillig, Public Policy Center, lpytlikz@nebraska.edu, Alan Tomking, Public Policy Center, atomkins@nebraska.edu 
Description

Nebraska’s native prairies are a valued resource and under constant anthropogenic demand and degradation. By engaging land owners in voluntary programs, the Platte River Habitat Partnership aims to restore and enhance this important natural resource. In this project, the Public Policy Center conducted a survey to assess land owners’ perceptions of the Platte River Habitat Partnership to help direct the Partnership’s second phase. Specifically, land owners who live in the region covered by the Partnership but did not participate, and those that did participate in the Partnership were surveyed in order to answer four key questions: 1. How knowledgeable are these land owners about the Partnership? 2. What is the nature of these land owners’ interactions with the Partnership? 3. How is the Partnership itself generally perceived by these land owners? 4. What would encourage land owners who had not participated in the Partnership to participate?

Project Support The Nature Conservancy
Project Website http://ppc.unl.edu/project/PlatteRiverHabitatPartnershipSurvey
Report PRHP_Report.pdf
Current Status Completed
Topic Water Quality
Project's Primary Contact Information
Name Kolok, Alan
Unit Biology, UNO
Email akolok@mail.unomaha.edu
Phone 402-554-3545
Web Page http://www.unomaha.edu/envirotox/whoiam.php
Project Information
Title Occurrence and biological effect of exogenous steroids in the Elkhorn River, Nebraska
Other(s) Daniel D. Snow, School of Natural Resources, dsnow1@unl.edu; Satomi Kohno, Department of Zoology, University of Florida, kohno@ufl.edu; Marlo K. Sellin, Department of Biology, UNO, msellin@mail.unomaha.edu; Louis J. Guillette Jr., Department of Zoology, University of Florida, ljg@ufl.edu 
Description

Recent studies of surface waters in North America, Japan and Europe have reported the presence of steroidogenic agents as contaminants. This study had three objectives:

  1. to determine if steroidogenic compounds are present in the Elkhorn River,
  2. to determine if sediments collected from the Elkhorn River can act as a source of steroidogenic compounds to aquatic organisms, and
  3. to determine if site-specific biological effects are apparent in the hepatic gene expression of fathead minnows.

Evidence was obtained using three approaches:

  1. deployment of polar organic chemical integrative samplers (POCIS),
  2. deployment of caged fathead minnows, and
  3. a laboratory experiment in which POCIS and fish were exposed to sediments from the deployment sites.

Deployment sites included: the Elkhorn River immediately downstream from a Nebraska wastewater treatment plant, two waterways (Fisher Creek and Sand Creek) likely to be impacted by runoff from cattle feeding operations, and a reference site unlikely to be impacted by waste water inputs. The POCIS extracts were analyzed for a number of natural steroids and metabolites, as well as four different synthetic steroids: ethinylestradiol, zearalonol, 17-trenbolone and melengestrol acetate. Estrogenic and androgenic metabolites, as well as progesterone and trace levels of melengestrol acetate were detected in POCIS deployed at each site. POCIS deployed in tanks containing field sediments from the four sites did not accumulate the synthetic steroids except for ethinylestradiol, which was detected in the aquarium containing sediments collected near the wastewater treatment plant. Fish deployed in Sand Creek and at the wastewater treatment plant experienced significantly elevated levels of gene expression for two genes (StAR and P450scc) relative to those deployed in Fisher Creek. Fish exposed to the sediments collected from Sand Creek had significantly higher levels of hepatic StAR and P450scc gene expression than did fish exposed to sediments from the two other field sites, as well as the no-sediment control tank.

In conclusion:

  1. detectable levels of steroidogenic compounds were detected in passive samplers deployed in the Elkhorn River,
  2. sediments do not appear to be a significant source for steroidogenic compounds, and
  3. site-specific differences were found in mRNA expression among the different treatment groups of fish; however, a functional explanation for these differences is not readily forthcoming.
Project Support Nebraska Game and Parks Commission, U.S. Geological Survey's Section 104b Program as administered by the UNL Water Center, US Environmental Protection Agency Greater Opportunities Fellowship, Dr. Daniel Villeneuve, US Environmental Protection Agency
Project Website
Report Kolok_Elkhorn.pdf
Current Status Published in Science of the Total Environment 2007 388:104-115
Topic Water Quality
Project's Primary Contact Information
Name Kolok, Alan
Unit Biology, UNO
Email akolok@mail.unomaha.edu
Phone 402-554-3545
Web Page http://www.unomaha.edu/envirotox/whoiam.php
Project Information
Title The Watershed as A Conceptual Framework for the Study of Environmental and Human Health
Other(s) Cheryl L. Beseler, Department of Environmental, Agricultural and Occupational Health, UNMC, cbeseler@unmc.edu; Xun-Hong Chen, School of Natural Resources, xchen2@unl.edu; Patrick J. Shea, School of Natural Resources, pshea1@unl.edu 
Description

The watershed provides a physical basis for establishing linkages between aquatic contaminants, environmental health and human health. Current attempts to establish such linkages are limited by environmental and epidemiological constraints. Environmental limitations include difficulties in characterizing the temporal and spatial dynamics of agricultural runoff, in fully understanding the degradation and metabolism of these compounds in the environment, and in understanding complex mixtures. Epidemiological limitations include difficulties associated with the organization of risk factor data and uncertainty about which measurable endpoints are most appropriate for an agricultural setting. Nevertheless, the adoption of the watershed concept can alleviate some of these difficulties. From an environmental perspective, the watershed concept helps identify differences in land use and application of agrichemicals at a level of resolution relevant to human health outcomes. From an epidemiological perspective, the watershed concept places data into a construct with environmental relevance. This project uses the Elkhorn River watershed as a case study to show how the watershed can provide a conceptual framework for studies in environmental and human health.

Environmental sampling is necessary for evaluating exposure to hormone disrupting chemicals (HDCs); however, sampling is not systematic in time or space, nor does it represent the time frame necessary to adequately link it to human disease outcomes. Although data from municipal sources are available and reliable, countless private drinking water wells go untested and unmonitored. These wells may be in areas vulnerable to concentrated reservoirs of contaminants due to the soil type, infiltration rate, runoff potential, organic matter and erodibility coupled with land use in the region and the chemical properties of the contaminants introduced into the environment. The lack of a defined boundary and introduction of exposure heterogeneity is one of the primary reasons why associations to health outcomes cannot be shown in environmental epidemiological studies.

The use of the watershed provides a natural boundary and the potential within this boundary to obtain denominator data. Based on the characteristics of the watershed combined with sampling data, shared exposures can be identified and intermediate hypotheses tested using sentinel markers of exposure in fish and humans. Lastly, comparable groups identified in other watersheds with similar characteristics but different surrounding land uses can be used to replicate findings.

Project Support Department of Environmental, Agricultural and Occupational Health, University of Nebraska Medical Center
Project Website
Report Kolok_Watershed.pdf
Current Status Published in Environmental Health Insights 2009 3:1-10
Topic Water Quality
Project's Primary Contact Information
Name Spalding, Roy
Unit Agronomy and Horticulture
Email rspalding1@unl.edu
Phone 402-472-8214
Web Page http://agronomy.unl.edu/spalding
Project Information
Title Risk-Managed Approach for Routing Petroleum Pipelines: Keystone XL Pipeline, Nebraska
Other(s) Aaron Hirsh, Department of Civil Engineering, ajhirsh@huskers.unl.edu 
Description

TransCanada’s proposed international crude oil pipeline route over sensitive, relatively pristine, subirrigated land underlain by the Ogallala aquifer led to increased scrutiny and eventual rejection of the Keystone XL pipeline. Pipeline routing could be made much more acceptable by adopting risk-managed routes that lessen the potential to adversely impact high-quality groundwater and, should a release occur, decrease the longevity of hazardous groundwater contaminants. Threats to water quality are taken quite seriously in states like Nebraska where 85% of the population depend on groundwater for potable water.

The authors proposed a southeasterly route through Holt, Antelope and Pierce counties, to the existing north-south Keystone 1 pipeline, avoiding the Ogallala aquifer beneath the fragile and pristine Sandhills, sub-irrigated meadows and areas with very shallow water tables. The risk-managed route through these three counties is through overlying row-cropped land underlain by already contaminated Ogallala groundwater to the Keystone 1 corridor.

Since little is known about the potential movement of dilbit (diluted bitumen) to groundwater at release sites, the study states that one of the best ways to minimize risks from a potential spill is to carefully select a pipeline route with minimal environmental risk and reasonable length. There are so many variables including the chemical composition of the dilbit, ambient temperature, depth to groundwater, emergency cleanup practices and other factors, that predicting the exact mechanism of contaminant movement to the aquifer is complicated. Additionally, the existing nitrate contamination in Holt, Antelope and Pierce counties stretches for over 100 miles and 1 million acres. These leached soils enhance the degradation of hazardous petroleum compounds in groundwater.

Project Support Nebraska Ethanol Board and Hatch grant 21-6222-1055
Project Website
Report Risk_Managed_Petroleum_Pipeline.pdf
Current Status Completed
Pic 1 Project Image
Topic Water Quality
Project's Primary Contact Information
Name van Donk, Simon
Unit West Central Research and Extension Center
Email svandonk2@unl.edu
Phone 308-696-6709
Web Page http://westcentral.unl.edu/web/westcentral/svandonk
Project Information
Title Quantify the extent of vertical hormone movement through vadose zone soils
Description

The extent of exogenous hormone use in beef cattle production, in addition to endogenous hormones, increases the risk of hormone residues entering the environment when manure is applied to soil. This research will provide key information on the environmental fate of hormones commonly found in feedlot cattle manure. This information is critical in developing management practices for concentrated animal feeding operations and farms that will reduce environmental risks associated with land application of manure.

This research will be conducted using the specialized percolation lysimeters research site at the West Central Research and Extension Center during 2008 and 2009. The site contains fourteen percolation lysimeters installed at the center of each of fourteen field plots. Each plot is 40 ft m by 40 ft. Each lysimeter contains an undisturbed soil core with a diameter of 3 ft and a depth of 8 ft and has porous extractors at the bottom, which allows the extraction of leachate from unsaturated soil using a vacuum pump. These lysimeters have been used successfully for several nitrate-leaching experiments. Water samples, which represent the water that is leached from the crop root zone, can be collected at the bottom of these lysimeters and will be used to determine the amounts and types of hormones leaching below the crop root zone. Treatments will consist of treated stockpiled manure, treated compost manure, and a check (no manure application). The manures will be applied to the lysimeters and field areas adjacent to the lysimeters in the spring of 2008 at application rates to satisfy the nitrogen needs of corn based on University of Nebraska recommendations. The check plots will receive commercial nitrogen fertilizer to match the manure N availability. Three treatments and three replications (nine lysimeters in nine plots) will be used for this study.

Wheat will be planted in the lysimeters and adjacent plots during both years. Soil moisture from each plot will be measured weekly at 1 ft depth increments to a depth of 7 ft, using the neutron probe method. Water samples will be collected every three weeks from the lysimeters from April to November in both years. Soil samples will be collected at six depth increments down to a depth of 8 ft, four times between application and October in 2008, and three times from April to August in 2009. To reduce sampling errors created by spatial variability within each plot, five sub-samples will be taken from each depth. The sub-samples will then be mixed to create one composite sample. Background soil profile samples will be taken before the manure is applied. Sampling depths will be increased as needed, based on the confirmed movement of hormones of interest through the soil profile. Soil and leachate samples will only be taken during the periods when the ground is not frozen (April to November), when movement of water is expected.

Project Support n/a
Project Website
Report
Current Status Continuing
Topic Wildlife
Project's Primary Contact Information
Name Pegg, Mark
Unit School of Natural Resources
Email mpegg2@unl.edu
Phone 402-472-6824
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=739
Project Information
Title Habitat Usage of Missouri River Paddlefish Project
Description Sediment from the Niobrara River has created a delta area near the headwaters of Lewis and Clark Lake, the reservoir formed by Gavins Point Dam on the Missouri River. This sediment aggregation has reduced reservoir volume and threatens to fill the reservoir; therefore, restoration of reservoir capacity has been proposed by means of high-velocity water releases from upstream mainstem dams. Biologists, however, have reported that this delta area may serve as spawning grounds for native fishes like paddlefish, and may provide suitable spawning habitat for federally endangered pallid sturgeon. This situation has created a unique paradox where information is needed to provide insight into fulfilling both the river management needs and biological needs in the Missouri River. This project will use paddlefish telemetry to study spawning success.

Click here to read Brenda Pracheil's dissertation on Paddlefish populations

Project Support Nebraska Environmental Trust
Project Website
Report Pracheil et al_Fisheries_2012.pdf
Current Status Completed
Topic Wildlife
Project's Primary Contact Information
Name Pope, Kevin
Unit Nebraska Cooperative Fish and Wildlife Research Unit
Email kpope2@unl.edu
Phone 402-472-7028
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=759
Project Information
Title Population Assessment of Channel Catfish in Nebraska
Other(s) Lindsey Chizinski, Graduate Assistant 
Description

Channel catfish (Ictalurus punctatus) is an important sport fish, particularly in the Great Plains. In Nebraska, a majority of anglers target channel catfish, and fishing activities are a vital part of the state’s economy. Lentic water bodies provide the primary fishing opportunity for catfish anglers in Nebraska. Despite the popularity and economic importance of channel catfish, little is known of its population dynamics or habitat requirements, and existing studies often profile river populations.

Current standards for sampling channel catfish in lentic systems often yield inadequate catch to assess populations. The objective of this study was to utilize a recently developed sampling method, tandem-set hoop nets, to collect channel catfish in sufficient quantities to describe the effects of stocking and habitat variability on populations in lentic ecosystems. Three lentic ecosystems common to the Great Plains were considered: sand pits, flood-control reservoirs, and irrigation/power-generation reservoirs.

The influence of stocking on abundance and condition of channel catfish varied with ecosystem type. In sand pits, stocking negatively influenced fish condition, and only stocking on an annual basis positively influenced abundance. In flood-control reservoirs, stocking did not influence fish condition, but was associated with greater abundance. In irrigation/power-generation reservoirs, stocking did not influence fish condition or abundance. Additionally, there was evidence that mortality and growth rates varied with ecosystem type. In general, channel catfish from irrigation/power-generation reservoirs were predicted to experience slower growth and lower mortality, whereas channel catfish from sand pits were predicted to experience the fastest growth and highest mortality.

Catch rates of channel catfish were substantially less in this study compared to previous records of tandem-set hoop net surveys, but hoop nets were more efficient than the current standard gear, experimental gill nets, at capturing channel catfish. That is, 100 channel catfish could be captured with fewer sets of hoop nets than gill nets. However, catch rates and size structure of channel catfish in tandem-set hoop nets varied within the sampling season and between years. Furthermore, length-frequency distributions of channel catfish were dissimilar between hoop nets and gill nets.

Click here to read Lindsey Chizinski's Master's Thesis on Channel Catfish Population in Nebraska

Project Support Nebraska Game and Parks Commission
Project Website http://snr.unl.edu/necoopunit/research.main.html#channel_catfish
Report
Current Status Completed
Topic Wildlife
Project's Primary Contact Information
Name Young, Chelsey
Unit Biology, UNK
Email youngca2@unk.edu
Phone 507-469-8284
Web Page
Project Information
Title A range-wide assessment of plains topminnow (Fundulus sciadicus) distribution and potential threats
Other(s) W. Wyatt Hoback, Biology UNK, hobackww@unk.edu; Keith Koupal, Biology UNK; Justin Haas 
Description The plains topminnow, Fundulus sciadicus, was once distributed from the Mississippi River to the Rocky Mountains, north to South Dakota and as far south as Oklahoma. Two centers of distribution are recognized. One is centered in Nebraska and the second is centered in Missouri. The geographic range of plains topminnow has decreased in the past decades. Plains topminnow are now considered a species of special concern in the state of Nebraska and listed as a Tier 1 species in the Nebraska Natural Legacy Project. Elimination of plains topminnow populations has been associated with introduction of invasive species, as well as loss of backwater habitats due to drought and lowered water tables. The objective of this project is to provide an updated assessment of plains topminnow distribution and population status as compared to all available historical records. Between 2004 and the present, sampling of plains topminnow revealed that in Nebraska 77% of historic Nebraska sites no longer contain plains topminnow populations. The sampling of remaining historic sites in Nebraska and neighboring states will continue in the 2009 sampling season.
Project Support n/a
Project Website
Report topminnow_range_reduction.pdf
Current Status Completed