NU Water-Related Research in the Little Blue NRD

The list below shows water-related research being conducted within your NRD or that affects your NRD. They are sorted by water topic, then by primary contact's last name.

Displaying 17 records found for Little Blue NRD


Topic Crop Nutrient Use
Project's Primary Contact Information
Name Wortmann, Charles
Unit Agronomy and Horticulture
Email cwortmann2@unl.edu
Phone 402-472-2909
Web Page http://agronomy.unl.edu/wortmann
Project Information
Title Nitrogen Use Efficiency of Irrigated Corn for Three Cropping Systems in Nebraska
Other(s) Charles Shapiro, Agronomy & Horticulture, cshapiro@unl.edu; Richard Ferguson, Agronomy & Horticulture, rferguson1@unl.edu; Gary Hergert, Panhandle Research & Extension Center, ghergert1@unl.edu 
Description

Overview Nitrogen fertilizer will continue to be indispensible for meeting global food, feed, and fiber needs. Voroneyand Derry (2008) estimated that 340 million Mg yr-1 N is fixed by natural means, including lightning and biological N fixation, and 105 million Mg yr-1 is fixed by human activities, including burning of fossil fuels and N fertilizer production, with N fixation by human activities expected to continue to increase. Townsend and Howarth (2010) estimated the amount of N fixed by human activities to be about 180 million Mg yr-1, with most used as mineral fertilizer. Fertilizer N production has important environmental implications with an average of ~2.55 kg CO2 emitted per kg fertilizer N fixed and transported (Liska et al., 2009). Th e amount of N applied is associated with emission of N2O (IPCC–OECD, 1997) and N accumulation in sensitive aquatic, marine, and terrestrial ecosystems (Groffman, 2008; Malakoff , 1998). Th e challenge is to produce more grain to meet growing global needs with high NUE.

Conclusions Across diverse production environments, high corn yields can be achieved with efficient use of soil and applied N and without high risk of NO3 -N leaching to groundwater. With excellent farm management, recovery of applied fertilizer-N in high-yielding corn fields of Nebraska was well above 60 to 70% at the economically optimal nitrogen rate (EONR), resulting in low residual soil nitrate nitrogen (RSN) levels. Agronomic efficiency and crop partial factor productivity (PFP), the Nitrogen use efficiency (NUE) components most closely related to profitability of production, can also be high at EONR. Less preplant and more in-season N application may be especially important for drybean (CD) which had low recovery efficiency (RE) and much postharvest RSN compared with corn (CC) and soybean (CS). The levels of NUE achieved in our study for CC and CS far exceed current national or regional means, demonstrating the potential for high NUE with high yield corn production. Further NUE efficiency may be gained through more accurate in-season N application such as with use of the presidedress NO3 test (Andraski and Bundy, 2002) and spatial variation in N rate in response to variation in crop need, such as through use of reflectance sensors (Scharf and Lory, 2009; Barker and Sawyer, 2010; Roberts et al., 2010).

Project Support Nebraska State Legislature, Nebraska Agricultural Business Association
Project Website
Report Wortmann_NUE.pdf
Current Status Completed
Topic Crop Water Use
Project's Primary Contact Information
Name Bernards, Mark
Unit Agronomy and Horticulture
Email mbernards2@unl.edu
Phone 402-472-1534
Web Page http://agronomy.unl.edu/bernards
Project Information
Title Water Use of Winter Annual Weeds
Other(s) Suat Irmak, Biological Systems Engineering, sirmak2@unl.edu 
Description

This study examines the water use of winter annual weeds. More winter annual weeds grow now than 20 years ago because of the adoption of reduced tillage systems, where the soil is not disturbed between harvest and planting. Winter annuals typically germinate in the fall, overwinter as small plants, and grow rapidly as temperatures warm in the spring; these weeds are especially well adapted to limited summer rainfall. Common winter annuals in Nebraska are downy brome, henbit, field pennycress, wild mustard, marestail (horseweed), foxtail barley, shepherdspurse, speedwell, and prickly lettuce. This project is investigating whether allowing winter annual weeds to grow too long in the spring depletes the soil of moisture that would benefit the crop later in the summer.

Estimated potential nitrogen immobilization by winter annual weeds may be calculated as:

  • 500 lbs/ac of winter annual biomass growth at planting time (this would be a relatively dense, uniform stand of weeds).
  • As a general statement, nitrogen composes approximately 3% of plant biomass.
  • $0.58/lb of nitrogen fertilizer (based on $950/ton of anhydrous ammonia)

Based on these assumptions, a dense, uniform stand of winter annuals could tie up approximately 15 lb of nitrogen per acre (500 x 0.03), or $8.70 per acre (15 x 0.58) of nitrogen intended for a corn crop.

Estimating the irrigation cost to replace water used by the same 500 lbs/A of winter annual biomass by assuming:

  • 500 lbs/A of winter annual weed biomass at planting time,
  • 800 lbs of water is required to produce 1 lb of winter annual weed biomass.
  • At $2.50 diesel fuel, applying 1 inch of irrigation water per acre would cost $9.66.

The 500 lbs of winter annual biomass would use 400,000 lbs of water per acre (500 x 800), or 47,920 gallons of water (400,000 lb x 0.1198 gal/lb). This equals 1.75 acre inches of soil water (47,920 gal /{27,158 gal/acre in}) used by these weeds. Based on a cost of $9.66 to apply 1 inch of irrigation water, it would cost approximately $17.00 per acre to replenish the water used by winter annual weeds in this scenario.

Project Support n/a
Project Website http://weedscience.unl.edu/
Report
Current Status Completed
Topic Crop Water Use
Project's Primary Contact Information
Name Hubbard, Kenneth
Unit High Plains Regional Climate Center
Email khubbard1@unl.edu
Phone 402-472-8294
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=55
Project Information
Title Data for Estimating Crop Water Use
Other(s) Ayse Kilic, School of Natural Resources, akilic@unl.edu 
Description

The University's High Plains Regional Climate Center (HPRCC) operates automated weather monitoring stations that take the essential information for calculating the Penman and Penman-Montieth reference evapotranspiration estimates. The estimates serve as the basis for estimating crop water use and as such are an essential element of the water budget for the hydrological cycle. These stations also monitor the soil moisture at four levels (10, 25, 50, and 100 cms) in the soil profile. The HPRCC is collecting hourly data from stations in Clay Center, Curtis, Holdrege, Imperial, McCook, Red Cloud, and Smithfield.

Project Support National Climatic Data Center
Project Website http://hprcc.unl.edu
Report
Current Status Continuing
Topic Crop Water Use and Water Use Efficiency
Project's Primary Contact Information
Name Abunyewa, Akwasi
Unit Agronomy and Horticulture
Email akwasi_abunyewa@yahoo.com
Phone
Web Page
Project Information
Title Skip-Row and Plant Population Effects on Sorghum Grain Yield
Other(s) Richard Ferguson, Agronomy and Horticulture, rferguson@unl.edu; Charles Wortmann. Agronomy and Horticulture, cwortmann2@unl.edu; Drew Lyon, Panhandle Research and Extension Center, dlyon1@unl.edu; Stephen Mason, Agronomy and Horticulture, smason1@unl.edu; Robert Klein, West Central Research and Extension Center, rklein1@unl.edu 
Description This research conducted in Clay, Gosper, Frontier, Hayes, Center, Lincoln, Red Willow, and Cheyenne Counties from 2005 to 2007 evaluated the effect of skip-row configuration and planting population on sorghum grain yield and yield stability in nonirrigated, no-till fields. Results were not consistent or significant across the sites. Skip-row planting is expected to produce higher yields when growing season water is less than 26-27 inches, with conventional planting producing higher yields in wetter areas.
Project Support U.S. Agency for International Development to the International Sorghum and Millet Collaborative Research Support Program, Scholarship Secretariat, Government of Republic of Ghana
Project Website
Report Wortmann_Sorghum.pdf
Current Status Published Agron.J. 2010 102:296-302
Topic Extension
Project's Primary Contact Information
Name Irmak, Suat
Unit Biological Systems Engineering
Email sirmak2@unl.edu
Phone 402-472-4865
Web Page http://bse.unl.edu/sirmak2
Project Information
Title South Central Agricultural Laboratory - Crop Water Use Research
Description

The South Central Agricultural Laboratory is a University of Nebraska research farm located about 15 miles east of Hastings immediately south of Highway 6. The primary focus of this farm is the development and refinement of irrigated crop production practices for Nebraska agriculture and beyond. A number of research projects are currently underway on site and in conjunction with producers in the region.

  1. Crop water use efficiency, nitrogen use efficiency, and best irrigation and fertigation management practices for subsurface-irrigated corn and soybeans.
  2. Measurement of soil evaporation under no-till, conventional (disk) till, and ridge till practices for corn using frequency-domain reflectometers under three irrigation frequencies and five irrigation levels for corn.
  3. Development of best deficit irrigation management strategies for soybeans.
  4. Center pivot irrigation engineering and evapotranspiration research: measurement of crop coefficients, evapotranspiration, and yield of corn under deficit irrigation settings.
  5. Measurement of crop water use and crop water use efficiency of eight corn hybrids under full and deficit irrigation and dryland settings.
  6. Measurement of maximum allowable crop water stress that can be imposed on corn, stress versus crop growth-yield- and available soil water relationships.
  7. Crop canopy temperature measurements to quantify crop water stress index for corn and soybeans.
  8. Measurements of hydraulics and uniformity coefficients, crop water use efficiency of a new low pressure irrigation system for soybeans.
  9. Measurement of energy fluxes and crop coefficients using high frequency techniques such as Bowen ratio energy balance system and Eddy covariance system to provide improved evapotranspiration data for corn, soybeans, and natural grassland.
  10. Measurement of non-growing (dormant season) evaporative losses to quantify annual evaporation and other water balance components.
  11. Operational characteristics of atmometers (ETgage) to measure reference evapotranspiration and Watermark granular matrix sensors to monitor soil water status and their practical applications and demonstrations for effective irrigation management.
  12. Rootworm pressure effect on crop water uptake under center pivot irrigation.
  13. On-farm demonstration of limited irrigation strategies for making maximum use of water resources. The project is being conducted in partnership with the NRCS and Nebraska Corn Board in Hordville, Geneva, York, Edgar, Ord, West Point, Schuyler, and Mead in grower fields.
Project Support Varies according to program and project
Project Website http://scal.unl.edu/
Report
Current Status Continuous
Topic Extension
Project's Primary Contact Information
Name Skipton, Sharon
Unit Southeast Research and Extension Center
Email sskipton1@unl.edu
Phone 402-472-3662
Web Page http://www.southeast.unl.edu/staffdir/Skipton_Sharon
Project Information
Title Southeast Research and Extension Center
Other(s) Gary Zoubek, York County Extension, gzoubek@unl.edu 
Description Each day University of Nebraska Extension makes a difference in the lives of adults and youth. The faculty and staff in the Southeast Research and Extension Center and the 28 County Offices work to bring relevant researched based information to people in communities, towns and urban centers. Our efforts rely increasingly on partnerships with government agencies, business, industry, schools and community organizations. Working together with our partners Extension strives to strengthen the social, economic and environmental base of Nebraska's communities. Our programs must be ever-changing as Extension listens and responds to issues as they evolve. The Southeast Research and Extension District is unique because it serves both urban and rural communities Nebraska. The faculty and staff are committed to bringing the resources of the University and its research based information to the individuals and communities of Southeast Nebraska.
Project Support Varies according to program and project - for more information see http://www.southeast.unl.edu/
Project Website http://www.southeast.unl.edu/
Report
Current Status Continuous
Topic Hydrology
Project's Primary Contact Information
Name Chen, Xun-Hong
Unit School of Natural Resources
Email xchen2@unl.edu
Phone 402-472-0772
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=19
Project Information
Title Hydrologic Connections in the Big and Little Blue River Basins
Other(s) Cheng Cheng, School of Natural Resources, ccheng2@unl.edu 
Description Over extraction of groundwater near a stream can lower stream stage and induce streamflow depletion when the stream and aquifer are hydrologically connected. The Little Blue River Basin is an area of intensive groundwater development for irrigation, and the streamflow depletion in this basin was determined by an analog model (Emery, 1966). However, the post audit of the model (Alley and Emery, 1986) suggested that the decline of water-levels was overestimated and streamflow depletion was underestimated. Therefore, it is necessary to re-evaluate stream-aquifer interactions in the basin. In this study, an area is chosen for this analysis from the basin and three main streams -- the Little Blue River, Big Sandy Creek, and Spring Creek are included. Channel sediments and structures play an important role in determining stream-aquifer interactions. Firstly, field and laboratory methods including geoprobe logging and permeameter tests are utilized to investigate the channel deposits in the three main streams in the Little Blue River Basin. Results show that channels have low hydraulic-permeable layers which reduce their hydraulic connections to the adjacent aquifers. Secondly, a groundwater flow model is constructed to identify the hydraulic properties of the aquifer and evaluate streamflow depletion under groundwater withdrawals in the study area. Modeling results indicate that streamflow depletion is very low and aquifer storage loss is the main source of groundwater pumpage.
Project Support Upper Big Blue Natural Resources Distrect, Lower Big Blue Natural Resources District, Little Blue Natural Resources District
Project Website
Report
Current Status Completed
Topic Hydrology
Project's Primary Contact Information
Name Chen, Xun-Hong
Unit School of Natural Resources
Email xchen2@unl.edu
Phone 402-472-0772
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=19
Project Information
Title Groundwater Flow Model for Franklin County
Description

Dr. Chen conducted a pumping test in the alluvial aquifer near Bloomington and streambed tests in the Republican River channel. This data was used to develop a groundwater flow model in Franklin County to simulate the impact of groundwater pumping on stream flow.

Project Support n/a
Project Website
Report
Current Status Completed
Topic Hydrology
Project's Primary Contact Information
Name Harvey, F. Edwin
Unit School of Natural Resources
Email feharvey1@unl.edu
Phone 402-472-8237
Web Page http://eas.unl.edu/people/faculty_page.php?lastname=Harvey&firstname=Ed&type=ADJ
Project Information
Title Hydrologic Research in the Rainwater Basin Wetlands of South-Central Nebraska
Description

As part of this project, Harvey and his students are conducting research to unravel the hydrology of central Nebraska's Rainwater Basin wetlands. These wetlands are of international importance as habitat for millions of migratory water birds. In addition, these playa wetlands may contribute to groundwater recharge and water quality improvement. However, many of the wetlands have been drained, and those remaining suffer functional impairment due to sedimentation and pesticide and fertilizer runoff.

Most of the remaining Rainwater Basin wetlands are geographically isolated. Currently research is underway to investigate the role of these wetlands in providing groundwater recharge and water quality improvement. This is a significant environmental issue of concern because groundwater in this region is of vital importance, providing drinking and irrigation water. Moreover, groundwater levels are declining throughout much of the region. Levels of nitrate and atrazine exceed drinking water standards in some parts of the basin. Most of the remaining playa wetlands are impaired by sediment and there is an active program to restore the wetlands by removing this sediment. Study sites are located in Phelps, Kearney, Clay, Fillmore, and York counties (see map below).

Three components need to be measured when establishing a hydrologic budget for these closed basin wetlands which are surface storage, evapotranspiration (ET), and groundwater recharge. ET is calculated by the Bowen-Ratio Energy Budget (BREB) Method with the aid of a Bower Tower. Surface storage and recharge data will be aided by stilling wells and drive-point wells, respectively. Hydroperiods and plant community diversity are being determined before and after sediment removal to evaluate the impact of in-washed sediments on recharge and underlying groundwater quality. Chloride concentrations obtained from upland runoff collectors will be incorporated into the Chloride Mass-Balance Method along with precipitation and sediment chloride concentrations to obtain recharge fluxes for a wetland site.

Two Master's theses and one Bachelor's thesis have been completed as part of this project:

  • Wilson, Richard D. (2010), Evaluating Hydroperiod Response in the Rainwater Basin Wetlands of South-Central Nebraska, MS Thesis, UNL School of Natural Resources, 163 p.
  • Foster, Sarah E., (2010), Temporal and Spatial Variations of Ions, Isotopes and Agricultural Contaminants in Surface Waters and Groundwater of Nebraska’s Rainwater Basin Wetland Region, MS Thesis, UNL Department of Earth and Atmospheric Sciences, 185 p.
Project Support U.S. Environmental Protection Agency
Project Website http://snr.unl.edu/harvey/projectrainwater.htm
Report
Current Status Continuing
Pic 1 Project Image
Pic Caption 1 The Rainwater Basin area of Nebraska. 
Topic Production Agriculture
Project's Primary Contact Information
Name Burbach, Mark
Unit School of Natural Resources
Email mburbach1@unl.edu
Phone 402-472-8210
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=268
Project Information
Title Personality Characteristics and Conservation Tillage: Understanding Farmers to Improve Surface Water Quality in Tuttle Creek Lake, Kansas
Other(s) Courtney Quinn 
Description

Farmers chose to adopt conservation practices for varying reasons. There are many models of pro-environmental behaviors that include personal, physical, economic, and institutional factors. Models of farmer behavior that include personal factors often only examine farmers' education level and years farming. Testing additional factors would greatly improve our understanding of the relationship between farmers' knowledge, skills, and abilities and conservation tillage. This study examines three potential variables in relation to farmers' conservation tillage practices that benefit surface water quality, environmental attitude, work motivation, and moral reasoning about the environment.

This study focused on the Tuttle Creek Watershed, specifically Gage and Jefferson counties in southeast Nebraska and Washington and Marshall counties in northeast Kansas. Land use in this watershed is primarily agricultural, with approximately 72% in corn, soybean, grain sorghum or other crops, 10% in pastureland, and 10% in woodland. Herbicides are used extensively to control agricultural weeds. Soil infiltration rates in this area range from moderate to very slow. As a consequence, most soils have a moderate to very high potential of transporting contaminants to surface waters. As the base of the watershed, Tuttle Creek Reservoir is listed as impaired for siltation, eutrophication, atrazine and alachlor. Extremely high suspended solids and nutrient loads enter the reservoir during storm events and excessive siltation has occurred in the upper third of the original conservation pool reducing its volume by approximately 30%. In November 2007 4000 mail surveys were delivered to farmers in the study area. Data on the farmers' tillage practices and the personality variables, hypothesized to be antecedents to tillage practices, were collected. 505 surveys were used for this analysis.

Survey results suggest that farmers motivated by tangible rewards, personal standards, and a strong sense of purpose are likely to use conservation tillage. Farmers who obtained a higher degree of education have learned either a concern for the environment or the ability to apply newer conservation technologies. Farmers with higher sales also use more conservation practices. This suggests that income allows farmers to implement practices that may have high initial start-up costs. Farmers who earn a high percentage of their family income from farming also use more conservation practices. A heavy dependence on the success of the farm may cause farmers to have a long-term outlook and see the benefits of using conservation.

The negative relationship between use of conservation tillage and Self-concept External motivation suggests that efforts to encourage adoption of no-till practices need to target the entire farming community. The negative correlation between age and use of conservation tillage and between years farming and use of conservation tillage suggests than younger farmers, and those who have been farming for fewer years, are more interested and willing to use conservation practices. This may be because younger farmers have grown up during a time of concern for the natural environment. Younger farmers may also be less set in their ways and therefore willing to try new practices.

Other personal characteristics should be studied in addition to those studied as part of this project. For example, researchers should investigate whether farmers experience empathy with downstream residents and the distance of concern farmers consider when making decisions. Farmers' need for control, and their perceived ability to create desired change should be researched to discover if correlations or causations exist with likelihood to use conservation tillage.

Project Support USDA
Project Website
Report Burbach_Personality.pdf
Current Status Published in Great Plains Research 2008 Vol. 18:1, 103-114
Topic Production Agriculture
Project's Primary Contact Information
Name Ferguson, Richard
Unit Agronomy and Horticulture
Email rferguson1@unl.edu
Phone 402-472-1144
Web Page http://agronomy.unl.edu/ferguson
Project Information
Title Interactions of Water and Nitrogen Supply for Irrigated Corn across Field Landscapes
Other(s) Tim Shaver, West Central Research & Extension Center, tim.shaver@unl.edu; Nicholas Ward, Agronomy & Horticulture, ward.nick.c@gmail.com; Suat Irmak, Biological Systems Engineering, sirmak2@unl.edu; Simon van Donk, West Central Research & Extension Center, simon.vandonk@unl.edu; Daran Rudnick, Agronomy & Horticulture, daran.rudnick@huskers.unl.edu; Brian Wienhold, Agronomy & Horticulture, bwienhold1@unl.edu 
Description

Water and nitrogen (N) supply to a crop can interact throughout the growing season to influence yield potential. The increasing availability of variable rate irrigation systems to growers in irrigated regions, along with existing capacity for variable rate fertilization, provides the opportunity for temporal and spatial management of inputs of water and nitrogen. This study was initiated in 2011 to explore interactions of landscape and soil features with water and N inputs on grain yield and water and N use efficiency. Five field locations were used across Nebraska to evaluate the effects of landscape variation, climate, and capacity for temporal and spatial management of water and N. Preliminary results in 2011 showed that at sites with significant topographic variation these features influenced grain yield as much as the rate of irrigation water or nitrogen fertilizer, indicating the importance of considering spatial variation in landscape features when optimizing rates and timing of water and nitrogen.

Five field locations were used for the study in 2011. Two sites were at University of Nebraska-Lincoln (UNL) research laboratories the South Central Agricultural Laboratory (SCAL) and the Brule Water Resources Laboratory (BWL). Three sites were located on cooperating producer’s fields one in Morrill County, and two in Hamilton County. The UNL research sites included more detailed measurements, and inclusion of treatments that were more yield-limiting than those on producer fields. Locations were situated across a rainfall and soils gradient in Nebraska, allowing evaluation of site-specific water/N management interactions over a range of annual rainfall and soil types. Three of the sites included the use of variable rate irrigation systems and two of the sites implemented canopy sensor-based in-season N treatments.

Project Support John Deere
Project Website
Report Ferguson_Landscape.pdf
Current Status Completed
Pic 1 Project Image
Pic Caption 1 Study locations in 2011, with precipitation gradient across Nebraska 
Topic Wastewater
Project's Primary Contact Information
Name Bartelt-Hunt, Shannon
Unit Civil Engineering
Email sbartelt2@unl.edu
Phone 402-554-3868
Web Page http://www.engineering.unl.edu/civil/faculty/ShannonBartelt-Hunt.shtml
Project Information
Title The occurrence of illicit and therapeutic pharmaceuticals in wastewater effluent and surface waters in Nebraska
Other(s) Daniel D. Snow, School of Natural Resources, dsnow1@unl.edu; Teyona Damon; Johnette Shockley; Kyle Hoagland, School of Natural Resources, khoagland1@unl.edu 
Description The occurrence and estimated concentration of twenty illicit and therapeutic pharmaceuticals and metabolites in surface waters influenced by wastewater treatment plant (WWTP) discharge and in wastewater effluents in Nebraska were determined using Polar Organic Chemical Integrative Samplers (POCIS). Samplers were installed in rivers upstream and downstream of treated WWTP discharge at Lincoln, Grand Island, and Columbus, downstream of Hastings' WWTP discharge, and from Omaha's effluent channel just prior to it being discharged into the Missouri River. Based on differences in estimated concentrations determined from pharmaceuticals recovered from POCIS, WWTP effluent was found to be a significant source of pharmaceutical loading to the receiving waters. Effluents from WWTPs with trickling filters or trickling filters in parallel with activated sludge resulted in the highest observed in-stream pharmaceutical concentrations. Azithromycin, caffeine, 1,7 - dimethylzanthine, carbamazepine, cotinine, DEET, diphenhydramine, and sulfamethazine were detected at all locations. Methamphetamine, an illicit pharmaceutical, was detected at all but one of the sampling locations, representing only the second report of methamphetamine detected in WWTP effluent and in streams impacted by WWTP effluent.
Project Support n/a
Project Website
Report Bartelt-Hunt_Wastewater.pdf
Current Status Published in Environmental Pollution 2009 157:786-791
Topic Water Quality
Project's Primary Contact Information
Name Gitelson, Anatoly
Unit Center for Advanced Land Management Information Technologies
Email agitelson2@unl.edu
Phone 402-472-8386
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=39
Project Information
Title Using Remote Sensing to Detect the Threat of Blue-Green Algae
Description

Remote sensing is a useful tool for providing regulatory officials with the data necessary to make decisions regarding recreational waters. In 2005, CALMIT scientists undertook a collaborative effort with the Nebraska Department of Environmental Quality aimed at developing a tool to identify lakes where blue-green algae populations are present. The overall purpose was to incorporate those affected lakes into a toxic-algae alert procedure to provide early warnings to the public about the potential danger. This project also served to promote coordination and information sharing about toxic-algae issues among local units of government, lake associations, lake owners, and the public.

Both in-situ (close-range) and remote techniques were employed to detect and quantify in real-time the algal phytoplankton pigment concentration and composition (i.e., chlorophyll-a and phycocyanin in the water column). Two criteria were used to identify lakes and reservoirs with high probability of toxic algae: 1) chlorophyll concentration above 50 mg/m3; and 2) existence of blue green algae (the phycocyanin absorption feature has been used to indicate remotely the presence of blue-green algae). These criteria were tested by analytical assessment of toxic algae and the tests were positive: when the sensor systems indicated high probability of toxins, they were found in water samples.

Project Support Nebraska Department of Environmental Quality
Project Website http://www.calmit.unl.edu/research.php
Report
Current Status Completed
Topic Water Quality
Project's Primary Contact Information
Name Riens, John
Unit Wisconsin Ecological Services Field Office, U.S. Fish & Wildlife Service
Email John_Riens@fws.gov
Phone 541-885-2503
Web Page http://www.fws.gov/
Project Information
Title Macroinvertebrate Response to Buffer Zone Quality in the Rainwater Basin Wetlands of Nebraska
Other(s) W. Wyatt Hoback, Biology UNK, hobackww@unk.edu; Matt Schwarz, U.S. Fish & Wildlife Service 
Description

The Rainwater Basin is one of the most endangered wetland ecosystems in North America. This ecosystem is critical to many species including migratory waterfowl. Land use and runnoff from agriculture and cattle confinement operations are likely to be reducing the basin's health and diversity, however little information exists concerning macroinvertebrates. Twenty-two locations were assessed for water quality parameters, vegetation composition, and macroinvertebrates identified to genus. Samples were collected biweekly starting in April through July for three years. Macroinvertebrate diversity was impacted in areas with little buffer although the effects were not pronounced. Institution of a more effective vegetative buffers strip may reverse this trend to improve ecosystem quality and provide for invertebrate resources for migratory birds.

Click here to see a poster about this research

Project Support n/a
Project Website
Report
Current Status Completed
Topic Water Quality
Project's Primary Contact Information
Name Shea, Patrick
Unit School of Natural Resources
Email pshea1@unl.edu
Phone 402-472-1533
Web Page http://snr.unl.edu/aboutus/who/people/faculty-member.asp?pid=109
Project Information
Title Model to Identify Watershed Vulnerability and High Impact Programs
Other(s) Maribeth Milner, Agronomy and Horticulture, mmilner1@unl.edu; Gary D. Lynne, Agricultural Economics, glynne1@unl.edu; Mark E. Burbach, Conservation and Survey Division, mburbach1@unl.edu; Mark Bernards, Agronomy and Horticulture, mbernards2@unl.edu. 
Description

To protect water quality we need to better forecast environmental risks and guide conservation management decisions. Watershed vulnerability is determined by physical setting (soil, topography, and climate) and land management practices. If the most vulnerable areas can be determined, fields within those areas can be targeted for conservation management and mitigation of contamination. A model using the Soil Survey Geographic (SSURGO) Database is being developed to identify vulnerable areas and determine the potential impact of management practices on agrichemical runoff and leaching within impaired watersheds in Nebraska, Kansas, Missouri, and Iowa. Saunders County, NE is the primary site for development of the model, which will be applied in the Blue River watershed (Jefferson and Gage Counties in NE and Washington and Marshall Counties in KS).

To implement effective conservation practices it is necessary to understand what motivates the behaviors of producers and land managers. A survey tool will be used to determine what motivates the behaviors of producers and land managers in choosing practices and technologies in vulnerable areas. As part of this survey tool, an upstream individual's capacity and willingness to empathize with downstream water users about the quality and quantity of the water in Tuttle Creek Lake will be measured (see Cornhusker Economics article.) A statistical model will predict responsiveness to change and decision typologies will be mapped. A behavioral assessment model will be applied to selected areas upstream of Tuttle Creek, KS to predict the probability that producers and land managers will adopt the technologies and practices associated with total maximum daily load (TMDL) recommendations, as well as the extent of adoption. The information gained in this project can be used to design policy, incentive structures, and educational programs leading to the adoption of conservation management practices that improve and protect water quality.

Project Support USDA-CSREES National Integrated Water Quality Program.
Project Website http://www.agecon.unl.edu/Cornhuskereconomics/2008/8-20-08.pdf
Report Empathy Conditioned Conservation 1 14 09.pdf
Current Status Continuous
Topic Water Quality
Project's Primary Contact Information
Name Tang, Zhenghong
Unit Architecture
Email ztang2@unl.edu
Phone 402-472-9281
Web Page http://architecture.unl.edu/people/bios/tang_zhenghong.shtml
Project Information
Title Assessment of Sedimentation and Water Quality Conditions in the Rainwater Basin's Playa Wetlands
Other(s) Mark Kuzila, School of Natural Resources, mkuzila1@unl.edu; Xu Li, Department of Civil Engineering, xuli@unl.edu; Amy Burgin, School of Natural Resources, aburgin2@unl.edu 
Description

The overall goal of this project is to prioritize watershed restoration/acquisition programs in the Rainwater Basin (RWB) by examining playa wetlands’ sedimentation and water quality conditions using the Revised Universal Soil Loss Equation 2 (RUSLE2) and the fly ash technology.

Three specific tasks are included in this project:

  1. Calculate and map the sedimentation rates and the age of deposition for all playa wetlands in RWB
  2. Consolidate existing water quality data of the RWB playa wetlands and evaluate the key factors influencing playa wetland water quality
  3. Assess the effects of sedimentation control practices and prioritize future watershed restoration/acquisition programs

The final products of this project include:

  1. An atlas of wetland sedimentation maps and a risk report highlighting the areas in watersheds with the highest sedimentation rates
  2. A geodatabase and an evaluation report on the water quality conditions of the playa wetlands in the RWB
  3. A written assessment report for sedimentation control practices and a watershed index to prioritize future conservation/acquisition programs
Project Support U.S. Environmental Protection Agency
Project Website http://www.unl.edu/playawetlands/
Report
Current Status Underway
Topic Wetlands
Project's Primary Contact Information
Name Tang, Zhenghong
Unit Architecture
Email ztang2@unl.edu
Phone 402-472-9281
Web Page http://architecture.unl.edu/people/bios/tang_zhenghong.shtml
Project Information
Title Developing LiDAR-Derived Wetland Maps To Assess Conservation Design Practices For Playa Wetlands In Rainwater Basin
Other(s) Ed Harvey, School of Natural Resources, feharvey1@unl.edu; Xu Li, Department of Civil Engineering 
Description The overall goal of this project is to provide wetland managers with topographically-correct 3-D wetland maps to prioritize wetland conservation efforts and assess wetland conservation design practices. This project addresses three specific tasks for the playa wetlands: 1) Establish accurate, topographically-correct, 3-D wetland maps to relate weather conditions and wetland functions; 2) Develop a measurable Restorable Wetland Index to prioritize playa wetland and drainages conservation; 3) Assess wetland conservation design practices for watershed-based wetland conservation. This research will use high-resolution Light Detections And Ranging (LiDAR) data to create next-generation wetland maps for playa wetlands. The research provides the missing link in conservation design as these data will provide accurate elevation measures to delineate watershed extent and determine the impact of individual hydrologic modifications. This project will be one of the first to integrate LiDAR data and a hydrologic modifications datasets to find the relations of current weather conditions and wetland functions. This project provides reliable, accurate wetland spatial parameters to prioritize playa wetland conservation and assess the effectiveness of existing wetland conservation design practices. The wetland conservation design tools and protocols will be examined in two pilot counties in Nebraska. The intellectual merit of the research is based on advancing knowledge linkage of wetland mapping technologies and wetland function modifications, and showing how to adapt wetland conservation designs. The outputs from this project provide practical protocols for state/regional/local wetland managers and thus ensure "no net loss" in quality and quantity of wetlands.
Project Support US EPA
Project Website
Report
Current Status Completed